Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
=\(\left(\frac{3}{4}\right)^{4032}.\left(\frac{4}{3}\right)^{4030}.\frac{4}{3}\)
=
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}=\left(\frac{9}{16}\right)^{2016}:\left(\frac{9}{16}\right)^{2015}.\frac{4}{3}\)
\(=\frac{9}{16}.\frac{4}{3}\)
\(=\frac{3}{4}\)
\(\left(\frac{9}{16}\right)^{2016}\cdot\left(\frac{16}{9}\right)^{2015}\cdot\frac{4}{3}=\left(\frac{9}{16}\right)^{2016}\cdot\left(\frac{9}{16}\right)^{2015}\cdot\frac{4}{3}\)
\(=\frac{9}{16}\cdot\frac{4}{3}\)
\(=\frac{3}{4}\)
\(\left(\dfrac{9}{16}\right)^{2016}.\left(\dfrac{16}{9}\right)^{2015}.\dfrac{4}{3}\)
=\(\dfrac{9^{2016}}{16^{2016}}.\dfrac{16^{2015}}{9^{2015}}.\dfrac{4}{3}\)
= \(\dfrac{9}{16}.\dfrac{4}{3}=\dfrac{3^2.4}{4^2.3}=\dfrac{3}{4}\)
tính
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
chỉ cần kết quả
=(16/10)2015.(16/9)(4/3)
=(8/5)2015.(4/3)3
(bn xem lại đề, có thể là 9/16 chứ k phải là 9/10)?
\(B=\left(\dfrac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2\)
\(=\dfrac{1^{2015}.9^{2015}}{9^{2015}}-\left(2^5.3\right)^2:\left(2^3.3\right)^2\)
\(=1-2^{10}.3^2:2^6.3^2\)
\(=1-\left(2^{10}:2^6\right).\left(3^2.3^2\right)\)
\(=1-2^4.3^4=1-\left(2.3\right)^4\)
\(=1-6^4=1-1296=-1925\)
b: \(C=\dfrac{1}{7}\cdot7\cdot9-3\cdot\dfrac{4}{3}+1=9-4+1=6\)
a: \(=\left(\dfrac{1}{9}\cdot9\right)^{2015}-\left(96:24\right)^2=1-16=-15\)
=\(\frac{9^{2016}}{16^{2016}}.\frac{16^{2015}}{9^{2015}}.\frac{4}{3}\)
=\(\frac{9}{16}.\frac{4}{3}\)
=\(\frac{3}{4}\)
k cho mk nhoa
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
\(=\left[\frac{9}{16}\left(\frac{9}{16}\right)^{2015}\right].\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
\(=\frac{9}{16}\left[\left(\frac{9}{16}\right)^{2015}.\left(\frac{16}{9}\right)^{2015}\right].\frac{4}{3}\)
\(=\frac{9}{16}\left[\left(\frac{9}{16}.\frac{16}{9}\right)^{2015}\right].\frac{4}{3}\)
\(=\frac{9}{16}.1^{2015}.\frac{4}{3}\)
\(=\frac{9}{16}.\frac{4}{3}\)
\(=\frac{3}{4}\)
a, \(\frac{8^{15^{ }}.3^{16}}{4^{23^{ }}.9^8}=\frac{2^{45}.3^{16}}{2^{46}.3^{16}}=\frac{2^{45}}{2^{46}}=\frac{1}{2}\)
b, \(\sqrt{121}-4.\sqrt{9}+\sqrt{36}=11-4.3+6=11-12+6=5\)
c,
\(\frac{2^5}{5^2}+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}+\left(-2016\right)^0\)
\(\frac{4}{25}+\frac{11}{2}.2+\frac{8}{-4}+1=\frac{4}{25}+11+\left(-2\right)+1=\frac{4}{25}+10\)
= \(\frac{254}{25}\)
\(\left(\dfrac{9}{16}\right)^{2016}.\left(\dfrac{16}{9}\right)^{2015}.\dfrac{4}{3}\)
\(=\left[\left(\dfrac{3}{4}\right)^2\right]^{2016}.\left[\left(\dfrac{4}{3}\right)^2\right]^{2015}.\dfrac{4}{3}\)
\(=\left(\dfrac{3}{4}\right)^{2018}.\left(\dfrac{4}{3}\right)^{2017}.\dfrac{4}{3}\)
\(=\left(\dfrac{3}{4}\right)^{2018}.\left(\dfrac{4}{3}\right)^{2018}\)
\(=\left(\dfrac{3}{4}.\dfrac{4}{3}\right)^{2018}\)
\(=\left(\dfrac{1}{1}.\dfrac{1}{1}\right)^{2018}\)
\(=1^{2018}\)
\(=1\)