Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(1-x\right)+f\left(x\right)=\dfrac{9^{1-x}}{9^{1-x}+3}+\dfrac{9^x}{9^x+3}=\dfrac{9}{9+3.9^x}+\dfrac{9^x}{9^x+3}=\dfrac{3}{9^x+3}+\dfrac{9^x}{9^x+3}=1\)
\(\Rightarrow f\left(x\right)=1-f\left(1-x\right)\)
\(\Rightarrow f\left(cos^2x\right)=1-f\left(sin^2x\right)\)
Do đó:
\(f\left(3m+\dfrac{1}{4}sinx\right)+f\left(cos^2x\right)=1\)
\(\Leftrightarrow f\left(3m+\dfrac{1}{4}sinx\right)=f\left(sin^2x\right)\) (1)
Hàm \(f\left(x\right)=\dfrac{9^x}{9^x+3}\) có \(f'\left(x\right)=\dfrac{3.9^x.ln9}{\left(9^x+3\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến trên R
\(\Rightarrow\left(1\right)\Leftrightarrow3m+\dfrac{1}{4}sinx=sin^2x\)
Đến đây chắc dễ rồi, biện luận để pt \(sin^2x-\dfrac{1}{4}sinx=3m\) có 8 nghiệm trên khoảng đã cho
Lời giải:
Ta có: \(\log_3(9^{x+1})\log_3(9^x+1)=3\)
\(\Leftrightarrow (x+1)\log_39\log_3(9^x+1)=3\)
\(\Leftrightarrow (x+1)\log_3(9^x+1)=\frac{3}{2}\)
Từ đây suy ra \(x+1\neq 0\)
\(\Rightarrow \log_3(9^x+1)=\frac{3}{2(x+1)}\)
\(\Leftrightarrow 9^x+1=3^{\frac{3}{2(x+1)}}\) (*)
Đạo hàm vế trái: \((9^x+1)'=\ln 9.9^x>0\), hàm đồng biến
Đạo hàm vế phải: \((3^{\frac{3}{2(x+1)}})'=\frac{-3}{2(x+1)^2}.\ln 3.3^{\frac{3}{2(x+1)}}<0\), hàm nghịch biến
Do đó PT (*) có một nghiệm duy nhất.
Đến đây việc còn lại là dò nghiệm duy nhất đó.
\(x\approx 0,3795\)
Xét hàm \(f\left(x\right)=\dfrac{1}{9^x-3}+\dfrac{1}{3^x-9}\) có \(f'\left(x\right)=-\dfrac{9^x.ln9}{\left(9^x-3\right)^2}-\dfrac{3^x.ln3}{\left(3^x-9\right)^2}< 0\)
\(\Rightarrow\) Hàm luôn nghịch biến trên miền xác định
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\dfrac{1}{3}-\dfrac{1}{9}=-\dfrac{4}{9}\) ; \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=0\) ; \(f\left(4\right)>0\)
\(\lim\limits_{x\rightarrow0,5^+}f\left(x\right)=+\infty;\lim\limits_{x\rightarrow0,5^-}f\left(x\right)=-\infty;\lim\limits_{x\rightarrow2^-}f\left(x\right)=-\infty;\lim\limits_{x\rightarrow2^+}f\left(x\right)=+\infty\)
BBT:
Xét hàm \(g\left(x\right)=x+\left|x-4\right|+a=\left\{{}\begin{matrix}a+4\text{ nếu }x\le4\\2x+a-4\text{ nếu }x\ge4\end{matrix}\right.\)
Từ BBT ta thấy:
- Nếu \(a\ge-3\Rightarrow g\left(x\right)\) cắt f(x) tại 2 điểm phân biệt thỏa mãn \(x< 4\)
- Nếu \(a=-4\Rightarrow g\left(x\right)\) cắt f(x) tại 2 điểm pb thỏa mãn \(x_1< 4< x_2\)
- Nếu \(a\le-5\) \(\Rightarrow g\left(x\right)\) cắt f(x) tại 3 điểm pb thỏa mãn \(x_1< x_2< 4< x_3\) (loại)
Vậy \(a=\left\{-1;-2;-3;-4\right\}\)
1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)
ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)
\(\Leftrightarrow0\le m\le3\)
Bài toán này không giải được
Do \(y'=\left(m-1\right)x^2+2\left(m^2-4\right)+m^2-9\)
Có \(\Delta'=\left(m^2-4\right)^2-\left(m-1\right)\left(m^2-9\right)\) là 1 biểu thức bậc 4 không thể xác định nghiệm
tìm m để phương trình \(7x^3+\left(2m-9\right)x^2-\left(m^2+2m-2\right)x-2=0\) có 3 nghiệm phân biệt
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{4}{3}\right)^{\dfrac{4}{x}}=\dfrac{9}{16}\)
\(\Rightarrow\left(\dfrac{3}{4}\right)^x.\left(\dfrac{3}{4}\right)^{-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow\left(\dfrac{3}{4}\right)^{x-\dfrac{4}{x}}=\left(\dfrac{3}{4}\right)^2\)
\(\Rightarrow x-\dfrac{4}{x}=2\)
\(\Rightarrow x^2-2x-4=0\)
Viet: \(x_1+x_2=2\)
\(=\int\left(x-4-\dfrac{4}{x-1}-\dfrac{9}{\left(x-1\right)^2}\right)dx\)
\(=\dfrac{1}{2}x^2-4x-4ln\left|x-1\right|+\dfrac{9}{x-1}+C\)
Đặt \(3^x=t>0\Rightarrow t^2-2\left(7-x\right)t+45-18x=0\)
\(\Delta'=\left(7-x\right)^2-\left(45-18x\right)=\left(x+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=7-x+x+2=9\\t=7-x-\left(x+2\right)=5-2x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3^x=9\Rightarrow x=2\\3^x=5-2x\left(1\right)\end{matrix}\right.\)
Xét (1) \(\Leftrightarrow3^x+2x-5=0\)
Nhận thấy \(x=1\) là 1 nghiệm của (1)
Xét hàm \(f\left(x\right)=3^x+2x-5\Rightarrow f'\left(x\right)=3^x.ln3+2>0;\forall x\)
\(\Rightarrow f\left(x\right)\) đồng biến trên R nên \(f\left(x\right)\) có tối đa 1 nghiệm
\(\Rightarrow x=1\) là nghiệm duy nhất của (1)
Vậy pt đã cho có 2 nghiệm thực \(x=\left\{1;2\right\}\)