Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=x^5-36x^4+37x^3-69x^2+34x+15\)
=\(x^5-35x^4-x^4+35x^3+2x^2-70x^2+x^2-35x+x+15\)
=\(\left(x^4-x^3+x^2+x\right)\left(x-35\right)+x+15\)
=0+35+15=50(do x=35)
b, \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)
\(\Rightarrow3\left(24x^2+6x-20x-5\right)-\left(72x^2-16x+27x-6\right)=203\)
\(\Rightarrow72x^2-42x-15-72x^2-11x+6=203\)
\(\Rightarrow-53x=203-6+15=212\)
\(\Rightarrow x=-4\)
Chúc bạn học tốt!!!
10.
\((x^2-2x-3)(x^2+10x+21)=25\)
\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)
\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)
\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)
Đặt \(x^2+4x-21=a\) thì pt trở thành:
\(a(a+24)=25\)
\(\Leftrightarrow a^2+24a-25=0\)
\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)
Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)
Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)
Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)
11.
\(x^4-4x^3+10x^2+37x-14=0\)
\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)
\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)
\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)
\((x+2)(x^3-6x^2+22x-7)=0\)
\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)
Đối với pt $(*)$ (ta sử dụng pp Cardano)
\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)
\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)
Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:
\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)
\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)
\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:
\(27t^2+576t-1000=0\)
\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)
\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)
\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)
\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.
P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.
a) \(x^2-6x+9=\left(x-3\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(\left(x-3\right)^2-16=\left(x-3-4\right)\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)
d) \(64+16x+x^2=\left(x+8\right)^2\)
e) \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
f) mk chỉnh đề
\(8-36x+54x^2-27x^3=\left(2-3x\right)^3\)
g) \(8x^3+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)
Áp dụng định lý bê du ta có dư của phép chia này chính là:
(- 2)3 - 37.(-2) + 84 = 150