Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, `(8x^3-4x^2): 4x -(4x^2-5x) : 2x + (2x)^2`
`=4x (2x^2-x) : 4x - 2x(2x-5/2 ) :2x + 4x^2`
`=2x^2-x-2x+5/2+4x^2`
`=6x^2-3x+5/2`
b, `(3x^3-x^2y) :x^2 -(xy^2+x^2y) :xy + 2x(x+1)`
`=x^2 (3x-y) :x^2 -xy(y+x) + (2x^2+2x)`
`=3x-y-y-x+2x^2+2x`
`=2x^2+4x-2y`
\(8x^3+12x^2y+6xy^2+y^3-z^3\)
\(=\left(2x+y\right)^3-z^3\)
\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)
a, 8a3 - 36a2 +54ab2 - 27b3
=(8a3-36a2b +54ab2 - 27b3)
=(2a-3b)2
=(2a-3b)(2a-3b)(2a-3b)
b, 8x3 + 12x2y + 6xy2 + y3 - z 3
=(8x3 + 12x2y + 6xy2 + y3) - z3
=(2x + y)3 - y3
=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2
= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2
\(a,=8\left(x^3-125\right)=8\left(x-5\right)\left(x^2+10x+25\right)\\ b,=\left(0,1+4x\right)\left(0,01-0,4x+16x^2\right)\\ d,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\left(\dfrac{1}{5}y+x\right)\left(\dfrac{1}{25}y^2-\dfrac{1}{5}xy+x^2\right)\)
a, 8x3- 1000 = (2x)3 - 103 = (2x -10). (4x2 + 20x +100)
b,\(0,001+64x^3=\left(\dfrac{1}{10}\right)^3+\left(4x\right)^3=\left(\dfrac{1}{10}+4x\right).\left(\dfrac{1}{100}-\dfrac{2}{5}x+16x^2\right)\)
c, \(\dfrac{1}{125}y^3+x^3=\left(\dfrac{1}{5}y\right)^3+x^3=\left(\dfrac{1}{5}y+x\right).\left(\dfrac{1}{25}y^2-\dfrac{1}{5}yx+x^2\right)\)
\(d,27x^3-\dfrac{1}{8}y^3=\left(3x\right)^3-\left(\dfrac{1}{2}y\right)^3=\left(3x-\dfrac{1}{2}y\right).\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\)
\(P=8x^3-5-\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3-5-\left(8x^3+1\right)=8x^3-5-8x^3-1=-6\)
Vậy giá trị biểu thức P không phụ thuộc vào biến
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
8x3-50x=0
x(8x2-50)=0
TH1: x=0 TH2: 8x2-50=0
8x2 = 50
x2 = \(\dfrac{25}{4}\)
x = + - \(\dfrac{5}{2}\)
vậy x\(\in\){0,+-\(\dfrac{5}{2}\)}
\(M=343-8x^3-64+8x^3=279\\ N=8x^3-1-1+8x^3=16x^3=16\cdot1000=16000\)
\(8x^3-1=\left(2x\right)^3-1^3=\left(2x-1\right)\left[\left(2x\right)^2+1.2x+1^2\right]\)
8x3-1
=24-1
=23