\(8^x:2^x=16^{2011}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

\(8^x:2^x=16^{2011}\)

\(\Leftrightarrow\left(2^3\right)^x:2^x=\left(2^4\right)^{2011}\)

\(\Leftrightarrow2^{3x}:2^x=2^{8044}\)

\(\Leftrightarrow2^{2x}=2^{8044}\)

\(\Rightarrow2x=8044\)

\(\Rightarrow x=4022\)

22 tháng 9 2015

8x : 2x = 162011

(23): 2= (24)2011

23x : 2= 28044

=> 3x-x=8044

=>    2x=8044

=>     x=8044:2

=>     x=4022

 

5 tháng 12 2016

1, Ta có : \(9^{1006}=\left(3^2\right)^{1006}=3^{2012}\)

Vì \(2011< 2012\)

\(\Rightarrow3^{2011}< 3^{2012}\)

bài 2 bạn tự làm nha

16 tháng 3 2017

a) \(\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=\sqrt{16}\) \(\Rightarrow\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=4\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}-\dfrac{1}{3}=-2\\\dfrac{x}{2}-\dfrac{1}{3}=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=\dfrac{-5}{3}\\\dfrac{x}{2}=\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{14}{3}\end{matrix}\right.\)

Vậy \(x=\dfrac{-10}{3}\) hoặc \(x=\dfrac{14}{3}\) thì thỏa mãn đề bài.

b) \(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\) \(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\) \(\Rightarrow\dfrac{x+4+2010}{2010}+\dfrac{x+3+2011}{2011}=\dfrac{x+2+2012}{2012}+\dfrac{x+1+2013}{2013}\) \(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\) \(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\) \(\Rightarrow\left(x+2014\right)\times\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\) \(\Rightarrow x+2014=0\) \(\Rightarrow x=-2014\)

Vậy \(x=-2014\) thì thỏa mãn đề bài.

c) \(3^{x+2}+4\times3^{x+1}=7\times3^6\) \(\Rightarrow3^{x+1+1}+4\times3^{x+1}=7\times3^6\) \(\Rightarrow3^{x+1}\times3+4\times3^{x+1}=7\times3^6\) \(\Rightarrow\left(3+4\right)\times3^{x+1}=7\times3^6\) \(\Rightarrow3^{x+1}=3^6\) \(\Rightarrow x+1=6\) \(\Rightarrow x=5\)

Vậy \(x=5\) thì thỏa mãn đề bài.

16 tháng 3 2017

a)

\(\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=\sqrt{16}\\ \Rightarrow\left(\dfrac{x}{2}-\dfrac{1}{3}\right)^2=4\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}-\dfrac{1}{3}=2\\\dfrac{x}{2}-\dfrac{1}{3}=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{1}{3}+2\\\dfrac{x}{2}=\dfrac{1}{3}-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{7}{3}\\\dfrac{x}{2}=\dfrac{-5}{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{3}.2\\x=\dfrac{-5}{3}.2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{14}{3}\\x=\dfrac{-10}{3}\end{matrix}\right.\)

b)

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\dfrac{x+4}{2010}+1+\dfrac{x+3}{2011}+1=\dfrac{x+2}{2012}+1+\dfrac{x+1}{2013}+1\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\Rightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)

mà \(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)

=> x + 2014 = 0

=> x = -2014

vậy x = -2014

c)\(3^{x+2}+4.3^{x+1}=7.3^6\)

\(\Rightarrow3^{x+1}.3+4.3^{x+1}=7.3^6\\ \Rightarrow3^{x+1}\left(3+4\right)=7.3^6\\ \Rightarrow3^{x+1}.7=7.3^6\\ \Rightarrow3^{x+1}=3^6\\ \Rightarrow x+1=6\\ x=6-1\\ x=5\)

vậy x = 5

13 tháng 6 2018

Ta có : 

\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+8}{2010}+\frac{x+7}{2011}\)

\(\Leftrightarrow\)\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)

\(\Leftrightarrow\)\(\frac{x+4+2014}{2014}+\frac{x+3+2015}{2015}=\frac{x+8+2010}{2010}+\frac{x+7+2011}{2011}\)

\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)

\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)

\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\ne0\)

Nên \(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

13 tháng 6 2018

Ta có: \(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+7}{2011}+\frac{x+8}{2010}\)

\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+7}{2011}+1\right)+\left(\frac{x+8}{2010}+1\right)\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}=\frac{x+2018}{2011}+\frac{x+2018}{2010}\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}-\frac{x+2018}{2011}-\frac{x+2018}{2010}=0\)

\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)

\(\Rightarrow x+2018=0\Rightarrow x=-2018\)

Chúc bn hc tốt! ^_^

11 tháng 10 2020

a, |x-7|=|9-234|

=> |x-7|=|-225|

=> |x-7|=225

=>\(\orbr{\begin{cases}x-7=225\\x-7=-225\end{cases}}\)=>\(\orbr{\begin{cases}x=232\\x=-218\end{cases}}\)

b, \(\left(\frac{x}{8}\right)^2+\frac{3}{16}=\frac{7}{16}\)

=>\(\left(\frac{x}{8}\right)^2=\frac{7}{16}-\frac{3}{16}\)

=>\(\left(\frac{x}{8}\right)^2=\frac{1}{4}\)

=>\(\left(\frac{x}{8}\right)^2=\left(\frac{1}{2}\right)^2\)

=>\(\orbr{\begin{cases}\frac{x}{8}=\frac{1}{2}\\\frac{x}{8}=\frac{-1}{2}\end{cases}}\)=>\(\orbr{\begin{cases}x.2=8\\x.2=-8\end{cases}}\)=>\(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

c, (8-32)2+(x-39)2=10

=>(-1)2+(x-39)2=10

=>(x-39)2=10-1

=>(x-39)2=9

=>(x-39)2=32

=>\(\orbr{\begin{cases}x-39=3\\x-39=-3\end{cases}}\)=>\(\orbr{\begin{cases}x=42\\x=36\end{cases}}\)

11 tháng 10 2020

a)\(\left|x-7\right|=\left|9-234\right|\)

\(\Rightarrow\left|x-7\right|=\left|-225\right|\)

\(\Rightarrow\left|x-7\right|=225\)

\(\Rightarrow x-7=\pm225\)

  • \(x-7=225\Rightarrow x=232\)
  • \(x-7=-225\Rightarrow x=-218\)

Vậy \(x\in\left\{232;-218\right\}\)

b)\(\left(\frac{x}{8}\right)^2+\frac{3}{16}=\frac{7}{16}\)

\(\Rightarrow\left(\frac{x}{8}\right)^2=\frac{7}{16}-\frac{3}{16}\)

\(\Rightarrow\left(\frac{x}{8}\right)^2=\frac{4}{16}\)
\(\Rightarrow\left(\frac{x}{8}\right)^2=\frac{1}{4}\)

\(\Rightarrow\left(\frac{x}{8}\right)^2=\left(\pm\frac{1}{2}\right)^2\)

\(\Rightarrow\frac{x}{8}=\pm\frac{1}{2}\)

  • \(\Rightarrow\frac{x}{8}=\frac{1}{2}\Rightarrow\frac{x}{8}=\frac{4}{8}\Rightarrow x=4\)
  • \(\Rightarrow\frac{x}{8}=\frac{-1}{2}\Rightarrow\frac{x}{8}=\frac{-4}{8}\Rightarrow x=-4\)

Vậy \(x\in\left\{\pm4\right\}\)

c)\(\left(8-3^2\right)^2+\left(x-39\right)^2=10\)

\(\Rightarrow\left(8-9\right)^2+\left(x-39\right)^2=10\)

\(\Rightarrow\left(-1\right)^2+\left(x-39\right)^2=10\)

\(\Rightarrow1+\left(x-39\right)^2=10\)

\(\Rightarrow\left(x-39\right)^2=9\)

\(\Rightarrow\left(x-39\right)^2=\left(\pm3\right)^2\)

\(\Rightarrow x-39=\pm3\)

  • \(\Rightarrow x-39=3\Rightarrow x=42\)
  • \(\Rightarrow x-39=-3\Rightarrow x=36\)

Vậy \(x\in\left\{42;36\right\}\)

4 tháng 4 2020

PT đã cho suy ra thành

\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)

\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)

Do

\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)

máy cái bạn tự suy ra cx thế

\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)

ta có 

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)

4 tháng 4 2020

Ta có:

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)

Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)

và với mọi a; b ; c ; d khác 0 có:

\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)

<=> x = y = z = t = 0

Thay vào T ta có : T = 0

\(a,|x|=2001\)

\(\Rightarrow x=-2001;x=2001\)

\(c,3-\left(x-2\right)=-2x+7\)

\(\Rightarrow3-x+2=-2x+7\)

\(\Rightarrow5-x=-2x+7\)

\(\Rightarrow x=2\)

\(d,\left(\frac{3}{4}\right)+\frac{2}{5}x=\frac{29}{30}\)

\(\Rightarrow\frac{2}{5}x=\frac{13}{60}\)

\(\Rightarrow x=\frac{13}{24}\)

\(e,\left(\frac{3}{7}\right)^5.x=\left(\frac{3}{7}\right)^7\)

\(\Rightarrow x=\left(\frac{3}{7}\right)^2\)

26 tháng 9 2019

\(\frac{16^x}{8}=2^x\)

\(\Rightarrow8=16^x:2^x\)

\(\Rightarrow8=8^x\)

\(\Rightarrow8^x=8^1\)

\(\Rightarrow x=1\)

Vậy \(x=1.\)

Chúc bạn học tốt!

26 tháng 9 2019

16x/8=2x

<=> (24)x/23=2x

<=> 24x/23=2x

<=> 24x-3=2x

=> 4x-3=x

<=> 4x-x=3

<=> 3x=3

<=> x=3:3

<=> x=1

Vậy x=1

Chúc bạn học tốt