K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2020

Cảm ơn ạ

28 tháng 4 2020

a, I(-4;3), R=\(\sqrt{17}\)

b, I(3;2), R=7

c, 16x2+16y2+16x-8y-11=0 <=> \(x^2+y^2+x-\frac{1}{2}y-\frac{11}{16}=0\)

\(\Rightarrow I\left(\frac{-1}{2};\frac{1}{4}\right),R=1\)

d, I(-4;-7), \(R=\sqrt{15}\)

e, 3x2 + 3y2 + 6x - 12y - 9 = 0<=> x2+y2+2x-4y-3=0

\(\Rightarrow I\left(-1;2\right),R=2\sqrt{2}\)

f, I(-5;-7), R=\(\sqrt{15}\)

NV
8 tháng 5 2019

Bạn ghi đề sai, hoặc các đáp án đều sai, ko có đường tròn nào đi qua O(0;0) hết

8 tháng 5 2019

đề ko sai nhé bạn

1 tháng 8 2017

Ta có : \(x^2-4x+22=\left(x^2-4x+4\right)+18=\left(x-2\right)^2+18\ge18>0\) với mọi x (1)

\(y^2+6y+36=\left(y^2+6y+9\right)+27=\left(y+3\right)^2+27\ge27>0\) với mọi y (2)

Nhân (1) và (2) vế theo vế , ta được :\(\left(x^2-4x+22\right)\left(y^2+6y+36\right)\ge18.27=486\)

Dấu "=" xảy ra khi : x=2 ,y=-3

Vậy x=2 và y=-3

NV
8 tháng 5 2019

Đường tròn có tâm \(I\left(-1;3\right)\) bán kính \(R=\sqrt{5}\)

Gọi d' là tiếp tuyến song song với d \(\Rightarrow\) pt d' có dạng: \(x+2y+c=0\)

Do d' tiếp xúc với (C) nên \(d\left(I;d'\right)=R\)

\(\Rightarrow\frac{\left|-1+2.3+c\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\Leftrightarrow\left|c+5\right|=5\) \(\Rightarrow\left[{}\begin{matrix}c=0\\c=-10\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x+2y=0\\x+2y-10=0\end{matrix}\right.\)

8 tháng 5 2019

Gọi phương trình tiếp tuyến là \(\Delta\)

Phương trình tiếp tuyến song song với d có dạng : \(x+2y+c=0\left(c\ne15\right)\)

Đường tròn (C) có bán kính R = \(\sqrt{5}\) và tâm I (-1;3)

d(I;\(\Delta\))=\(\frac{\left|-1+6+c\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|5+c\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}c=-5\\c=-10\end{matrix}\right.\)

Phương trình tiếp tuyến x+2y-5=0 hoặc x+2y-10=0

29 tháng 6 2020

(C) có tâm I(2;3), điểm A(3;2)

+Dây cung có độ dài lớn nhất trong đường tròn là đường kính

=> d qua tâm I(2;3) và A(3;2)

=> d nhận vecto nIA (1;1) là vtpt

=> d: x+y-5=0

8 tháng 5 2016

(C) có tâm I(-4;-2), bán kính R=5. Gọi phương trình đường thẳng tiếp tuyến đi qua M(2;1) là a(x-2)+b(y-1)=0

Khoảng cách từ tâm I tới đường thẳng này là $d=\dfrac{|-6a-3b|}{\sqrt{a^2+b^2}}=R=5$

$\(\Rightarrow\left(6a+3b\right)^2=25\left(a^2+b^2\right)\Leftrightarrow11a^2+36ab-16b^2=0\)$

16 tháng 8 2016

1)Thấy: x=0;y=0 không phải là nghiệm của hệ.

\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)

Trừ vế theo vế hai phương trình,đc:

\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)

\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:

\(26x^4-426x^2-1728=0\)

\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé oaoa

 

16 tháng 8 2016

lần sau bn đăng ít 1 thôi nhé