Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: \(x\ge-15\)
\(8x^2+16x-20-\sqrt{x+15}=0\)
<=> \(8x^2+16x-20=\sqrt{x+15}\)
=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)
<=> \(64x^4+256x^3-64x^2-641x+385=0\)
<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)
<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)
<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)
+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)
+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)
THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng
Vậy phương trình có hai nghiệm:....
a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)
d/ Hàm số xác định với mọi x
e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)
f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)
\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)
=> ptvn
d) ĐK : \(x^2+7x+7\ge0\)
Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)
\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)
\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )
\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )
f) ĐK : \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :
\(a+b-ab-1=0\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)
=> \(\sqrt{x^2-25}=\sqrt{x-5}\)
=>\(x^2-25=x-5\)
=>\(x^2-x=25-5=20\)
=>( đến đoạn này mình xin chịu )
\(a,\sqrt{16x}=8\)
=>\(16x=8^2\)
=>\(16x=64\)
=>\(x=64:16=4\)
Vậy \(x\in\left\{4\right\}\)
\(b,\sqrt{x^2}=2x-1\)
=>\(x=2x-1\)
=>\(2x-x=1\)
=>\(x=1\)
Vậy \(x\in\left\{1\right\}\)
\(c,\sqrt{9.\left(x-1\right)}=21\)
=>\(9.\left(x-1\right)=21^2=441\)
=> \(x-1=441:9=49\)
=>\(x=49+1=50\)
Vậy \(x\in\left\{50\right\}\)
\(d,\sqrt{4\left(1-x\right)^2}-6=0\)
=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)
=> \(4\left(1-x\right)^2=6^2=36\)
=>\(\left(1-x\right)^2=36:4=9\)
=>\(1-x=\sqrt{9}=3\)
=>\(x=1-3=-2\)
Vậy \(x\in\left\{-2\right\}\)
\(g,\sqrt{9\left(2-3x\right)^2}=6\)
=> \(9.\left(2-3x\right)^2=6^2=36\)
=> \(\left(2-3x\right)^2=36:9=4\)
=> \(2-3x=\sqrt{4}=2\)
=>\(3x=2-2=0\)
=>\(x=0:3=0\)
Vậy \(x\in\left\{0\right\}\)
( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )
a/\(\sqrt{x^2-2x}=\sqrt{2-3x}\left(đk:x\le0\right)
\)
\(\Leftrightarrow x^2-2x=2-3x\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(KTM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)
Vậy x=-2 là nghiệm của PT
b/\(\sqrt{x-3}-2\sqrt{x^2-9}=0\left(đk:x\ge3\right)\)
\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\4x+12=1\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=3\\x=-\frac{11}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy x=3
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!