Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^{13}-\left(8x^{12}-8x^{11}+8x^{10}-8x^9+.....+8x^2-8x^1\right)+8\)
Đặt \(B=8x^{12}-8x^{11}+8x^{10}-....+8x^2-8x^1\)
\(B=8.\left(x^{12}-x^{11}+x^{10}-x^9+....+x^2-x^1\right)\)
Đặt \(C=x^{12}-x^{11}+x^{10}-x^9+...+x^2-x\)
Suy ra \(C.x=x^{13}-x^{12}+x^{11}-x^{10}+.....+x^3-x^2\)
Nên \(C.x-C=x^{13}-x\)hay \(C.\left(x-1\right)=x^{13}-x\)
Khi đó \(C=\frac{x^{13}-x}{x-1}\)nên\(B=8.\frac{x^{13}-x}{x-1}\)
Từ đó tính tương tự nha , cách làm thì có thể sai những em vẫn cố gắng giúp , ai có cách hay hơn thì giải nhé
1: Ta có: \(x^{10}-4x^8+4x^6\)
\(=x^6\left(x^4-4x^2+4\right)\)
\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)
2: Ta có: \(m^3+27\)
\(=\left(m+3\right)\left(m^2-3m+9\right)\)
3: Ta có: \(x^3+8\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
4: Ta có: \(\frac{1}{27}+a^3\)
\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)
5: Ta có: \(8x^3+27y^3\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
6: Ta có: \(\frac{1}{8}x^3+8y^3\)
\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)
7: Ta có: \(8x^6-27y^3\)
\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
8: Ta có: \(\frac{1}{8}x^3-8\)
\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)
9: Ta có: \(\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
10: Ta có: \(\left(a+b\right)^3-c^3\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)
11: Ta có: \(x^3-\left(y-1\right)^3\)
\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)
\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
12: Ta có: \(x^6+1\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
1) \(x^{10}-4x^8+4x^6\)
\(=x^6\left(x^4-4x^2+4\right)\)
2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)
3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)
4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)
5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)
8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)
10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
P/s: Đăng ít thôi chớ bạn!
\(x\left(x^2+x+1\right)=8\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x-8\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\end{matrix}\right.\)
Với x=7
Ta có
\(BT=7^{13}-8.7^{12}+8.7^{11}-8.7^{10}+.....-8.7^2+8.7+8\)
\(=7^{13}-\left(7+1\right)7^{12}+\left(7+1\right)7^{11}-\left(7+1\right)7^{10}+......+\left(7+1\right)7+\left(7+1\right)\)
\(=7^{13}-7^{13}-7^{12}+7^{12}+7^{11}-7^{11}-7^{10}+.....+7^2+7+7+1\)
\(=15\)
Vậy tại x=7 thì biểu thức bằng 15
Với \(x=7\) thì \(x^{13}-8x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)
\(=-x^{12}+8x^{11}-8x^{10}+...-8x^2+8x+8\)
\(=x^{11}-8x^{10}+...-8x^2+8x+8\)
\(=...=x+8=15\)
x3-4x2+8x-8
=(x3-4x2+8x-4)-4
giải tiếp hộ mik vs
\(x^3-4x^2+8x-8\)
\(=x^3-2x^2+4x-2x^2+4x-8\)
\(=\left(x^3-2x^2+4x\right)-\left(2x^2-4x+8\right)\)
\(=x\left(x^2-2x+4\right)-2\left(x^2-2x+4\right)\)
\(=\left(x^2-2x+4\right)\left(x-2\right)\)
1, \(x^3+3^3=\left(x+3\right)\left(x^2-3x+9\right)\)
2, đề sai
3, \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)
4, \(x^3-64=\left(x-4\right)\left(x^2+4x+16\right)\)
5, \(1000-y^3=\left(10-y\right)=\left(100+10y+y^2\right)\)
tương tự ...
8, \(8x^3+27y^3=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
Câu 2 đề ko sai nha bạn.
2) x2 - (\(\sqrt{y^3}\))2 ( y>0)
= ( x -\(\sqrt{y^3}\)) ( x +\(\sqrt{y^3}\))
8 x -8 = - 64
8x - 8 = 8
8x = 8 + 8
8x = 16
x = 16 : 8
x = 2
=> x = 2