Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
a) (x2 + 4) (7x-3) = 0
=>x2+4=0 hoặc 7x-3=0
x2 =0-4 7x =0+3
x2=(-4) 7x=3
=> x thuộc rỗng
Những câu còn lại làm tương tự nha
a> =>x^2+4=0 hoặc 7x-3=0
=> x^2=-4 hoặc 7x=3
=> x=rỗng hoặc x=3/7
Vậy x=3/7
b>( x^2+x+1)(6-2x)=0
=>x^2+x+1=0 hoặc 6-2x=0
=> x=rỗng hoặc x=3
a) ( 5 - 2x )( 2x + 7 ) - 4x2 + 25 = 0
<=> ( 5 - 2x )( 2x + 7 ) + ( 5 - 2x )( 5 + 2x ) = 0
<=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0
<=> ( 5 - 2x )( 4x + 12 ) = 0
<=> \(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
b) ( 5x2 + 3x - 2 )2 - ( 4x2 - x - 5 )2 = 0 ( như này chứ nhỉ ? )
<=> [ ( 5x2 + 3x - 2 ) - ( 4x2 - x - 5 ) ][ ( 5x2 + 3x - 2 ) + ( 4x2 - x - 5 ) ] = 0
<=> ( 5x2 + 3x - 2 - 4x2 + x + 5 )( 5x2 + 3x - 2 + 4x2 - x - 5 ) = 0
<=> ( x2 + 4x + 3 )( 9x2 + 2x - 7 ) = 0
<=> ( x2 + x + 3x + 3 )( 9x2 + 9x - 7x - 7 ) = 0
<=> [ x( x + 1 ) + 3( x + 1 ) ][ 9x( x + 1 ) - 7( x + 1 ) ] = 0
<=> ( x + 1 )( x + 3 )( x + 1 )( 9x - 7 ) = 0
<=> ( x + 1 )2( x + 3 )( 9x - 7 ) = 0
<=> x + 1 = 0 hoặc x + 3 = 0 hoặc 9x - 7 = 0
<=> x = -1 hoặc x = -3 hoặc x = 7/9
c) 15x4 - 8x3 - 14x2 - 8x + 15 = 0
<=> 15x4 + 22x3 - 30x3 + 15x2 + 15x2 - 44x2 - 30x + 22x + 15 = 0
<=> ( 15x4 + 22x3 + 15x2 ) - ( 30x3 + 44x2 + 30x ) + ( 15x2 + 22x + 15 ) = 0
<=> x2( 15x2 + 22x + 15 ) - 2x( 15x2 + 22x + 15 ) + ( 15x2 + 22x + 15 ) = 0
<=> ( 15x2 + 22x + 15 )( x2 - 2x + 1 ) = 0
<=> ( 15x2 + 22x + 15 )( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}15x^2+22x+15=0\\\left(x-1\right)^2=0\end{cases}}\)
+) ( x - 1 )2 = 0 <=> x = 1
+) 15x2 + 22x + 15 = 15( x2 + 22/15x + 121/225 ) + 104/15 = 15( x + 11/25 )2 + 104/15 ≥ 104/15 > 0 ∀ x
Vậy phương trình có nghiệm duy nhất là x = 1
a)(2x-3)2=(x+5)2
=>4x2-12x+9=x2+10x+25
=>3x2-22x-16=0
=>3x2+2x-24x-16=0
=>x(3x+2)-8(3x+2)=0
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
b)X2.(x-1)-4x2+8x-4=0
=>x2(x-1)-4x2+4x+4x-4=0
=>x2(x-1)-4x(x-1)-4(x-1)=0
=>x2(x-1)-(4x-4)(x-1)=0
=>(x2-4x+4)(x-1)=0
=>(x-2)2(x-1)=0
=>x=2 hoặc x=1
c) 4x2- 25 - (2x- 5) . ( 2x+7)=0
=>4x2-25-(4x2+14x-10x-35)=0
=>4x2-25-4x2-14x+10x+35=0
=>-4x+10=0
=>-4x=-10 <=>x=5/2
d) x3+27+(x+3).(x-9)=0
=>x3+33+(x+3)(x-9)=0
=>(x+3)(x2-3x+9)+(x+3)(x-9)=0
=>(x2-3x+9+x-9)(x+3)=0
=>(x2-2x)(x+3)=0
=>x(x-2)(x+3)=0
=>x=0 hoặc x=2 hoặc x=-3
e) (x-2).(x+5)- x2+4=0
=>(x-2)(x+5)-(x-2)(x+2)=0
=>(x-2)(x+5-x-2)=0
=>3(x-2)=0 <=>x=2
Sau khi khai triển hằng đẳng thức và thực hiện chuyển vế bạn sẽ đk kết quả như này!(\(\left(2x-3\right)^2=\left(x+5\right)^2=3x^2-22x-14\)
\(a,\left(2x+1\right)\left(x^2+2\right)=0\)
\(\left[{}\begin{matrix}2x=-1\\x^2=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{matrix}\right.\)
\(b,\left(x^2+x+1\right)\left(6-2x\right)=0\)
\(6-2x=0\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(c,\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)
\(\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=-\frac{4}{3}\end{matrix}\right.\)
\(d,\left(x^2+4\right)\left(7x-3\right)=0\)
\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x^2=-4\\7x=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\pm2\left(voli\right)\\x=\frac{3}{7}\end{matrix}\right.\)
\(e,\left(8x-4\right)=\left(x^2+x+2\right)\)
\(8x-4=x^2+x+2\)
\(8x-4-x^2-x-2=0\)
\(7x-6-x^2=0\)
\(\left(x-6\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
\(f,\left(2x-1\right)\left(3x+2\right)\left(5-x\right)\)
đề thiếu hay là rút gọn vậy bn
1) \(x^4-8x^3+11x^2+8x-12=0\)
\(\Leftrightarrow x^4-x^3-7x^3+7x^2+4x^2-4x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)-7x^2\left(x-1\right)+4x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+4x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x^2-8x+12x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+1\right)-8x\left(x+1\right)+12\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-8x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2x-6x+12\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left[x\left(x-2\right)-6\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-2=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\\x=6\end{matrix}\right.\)
Vậy ...
a.
\(=\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
b.
\(=\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)\)
c.
a) \(2x^2+3x-8=0\)
Ta có: \(\Delta=3^2+4.2.8=73\)
pt có 2 nghiệm
\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)
d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)
Đặt \(x^2+2x=t\)
\(pt\Leftrightarrow t^2-2t-3=0\)
Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)
pt trên có 2 nghiệm
\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)
\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)
\(\Rightarrow x\in\left\{-3;-1;1\right\}\)
c) \(x^4+8x^3+19x^2+12x=0\)
\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)
\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)
\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)
Tìm x ak
a,(2x-3)2-(x+5)2=0
->(2x-3+x+5)(2x-3-x-5)=0
->(3x+2)(x-8)=0
=>3x+2=0 hoặc x-8=0
->x=-2/3 hoặc x=8
b,b, (x3-x2) - 4x2+8x-4 =0
=>x2(x-1)-4(x2-2x+1)=0
=>x2(x-1)-4(x-1)2=0
=>(x-1)(x2-4x+4)=0
=>x-1=0 hoặc (x-2)2=0
=>x=1 hoặc x=2
a,( 2x-3)2-(x+5)2 = 0
=> (2x-3-x-5)(2x-3+x+5)=0
=> (x-8)(3x+2)=0
=> \(\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\3x=-2\Rightarrow x=\dfrac{-2}{3}\end{matrix}\right.\)
vậy x=8 hoăc x=\(\dfrac{-2}{3}\)
b, (x3-x2) - 4x2+8x-4 =0
=> x2(x-1)-(4x2-8x+4)=0
=> x2(x-1)-4(x2-2x+1)=0
=> x2(x-1)-4(x-1)2=0
=> (x-1)[x2-4(x-1)]=0
=> (x-1)(x2-4x+4)=0
=> (x-1)(x-2)2=0
=> \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
vậy x=1; x=2
a. \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
Ta có: \(x^2+x+1=x^2+x+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\)
\(\Rightarrow S=\left\{3\right\}\)
b. \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1>0\forall x\)
\(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\)
\(\Rightarrow S=\left\{\frac{1}{2}\right\}\)
Như bạn quốc anh thì chưa đủ cơ sở kết luận nó vô nghiệm nha :)
Vì \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
\(\Rightarrow8x-4=0\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2
(8x - 4)(x2 + 2x + 2) = 0
<=> \(\orbr{\begin{cases}8x-4=0\\x^2+2x+2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x\in\varnothing\end{cases}}\Leftrightarrow x=\frac{1}{2}\)
Vậy x = 1/2 là nghiệm phương trình