
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


√ 8+√ 5 vs √ 7+√ 6
bình phuong 2 ve' ta dc
8+2√40+5 vs 7+2√ 42+6
<=>13+2√ 40 vs 13+2√ 42
do √ 40< √ 42 nen suy ra
√ 8+√ 5<√ 7+√ 6

Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)
\(=x-y+\frac{16}{x-y}\ge2.4=8\)
Đặt \(t=x^2+y^2\) thì ta có :
\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)
\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)

Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\frac{7-3}{2}=2\)
Vậy \(P=2\)

Ta có:
\(\hept{\begin{cases}mx+4y=9\\x+my=8\\2x+y+\frac{38}{m^2-4}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=8-my\\m\left(8-my\right)+4y=9\\2\left(8-my\right)+y+\frac{38}{m^2-4}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=8-my\\y\left(4-m^2\right)=9-8m\\2\left(8-my\right)+y+\frac{38}{m^2-4}=0\end{cases}}\)
dễ thấy m = 0 không phải nghiệm của hệ
\(\Leftrightarrow\hept{\begin{cases}x=8-my\\y=\frac{9-8m}{4-m^2}\\2\left(8-m.\frac{9-8m}{4-m^2}\right)+\frac{9-8m}{4-m^2}+\frac{38}{m^2-4}=3\left(3\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow3m^2-26m+23=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=\frac{23}{3}\end{cases}}\)

Vì (d)//(d3) nên a=1/2
=>y=1/2x+b
Tọa độ giao của (d1) và (d2) là:
x-7=-2x-1 và y=x-7
=>3x=6 và y=x-7
=>x=2 và y=-5
Thay x=2 và y=-5 vào(d), ta được:
b+1=-5
=>b=-6

a) \(\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\4\left(x+1\right)-\left(x+2y\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(x+1\right)+2\left(x+2y\right)=4\\8\left(x+1\right)-2\left(x+2y\right)=18\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11\left(x+1\right)=22\\3\left(x+1\right)+2\left(x+2y\right)=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4y+8=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)
b) ĐK : y khác 0
\(\hept{\begin{cases}x+\frac{1}{y}=-\frac{1}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+\frac{3}{y}=-\frac{3}{2}\\2x-\frac{3}{y}=-\frac{7}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=-5\\3x+\frac{3}{y}=-\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\-3+\frac{3}{y}=-\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\\frac{3}{y}=\frac{3}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\left(tm\right)\end{cases}}\)

+) \(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
\(=3\sqrt{4.5}-2\sqrt{9.5}+4\sqrt{5}\)
\(=6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
\(=4\sqrt{5}\)
+) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=\left(2\sqrt{7}-\sqrt{28}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=\left(2\sqrt{7}-2\sqrt{7}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}\)
\(=7+7\sqrt{8}\)
4^x+342=7^y
4^x phải lẻ vì 7^y lúc nào cũng lẻ
x =0 ( 4^0 = 1 ; 1 lẻ )
có 7^y=342+1
7^y = 343
7^3=343
y =3