K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

Chọn : C.9

Giải thích:

8n+1111...1 (n thừa số 1 )

\(\Rightarrow\) Tổng số số hạng của 1111...1 là n

\(\Rightarrow\) 8n+n=9n

Mà 9n \(⋮\) 9

\(\Rightarrow\)8n + 1111...1 ( n thừa số 1) \(⋮\) 9

 

a

=>(n+2)=5 :.n+2

=>5:. n+2

=>n+2 E (1,5)

th1

N+2=1

th2 tựlamf

20 tháng 10 2019

x không có giá trị đúng bởi vì trong bài ghi n ko phải x 

21 tháng 6 2017

Sửa đề:

Ta có:\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\forall n\)

\(\Rightarrowđpcm\)

22 tháng 4 2017

a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).

 

b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)

\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)

\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)

\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)

c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)

\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)

\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)

\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)

d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)

\(\Leftrightarrow1,05^n\ge2\)

\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)

22 tháng 4 2017

em mới lp 6 k biết trình bày kiểu lp 12

5 tháng 5 2020

a) Ta có 2n+8=2(n-3)+14

=> 14 chia hết cho n-3

n nguyên => n-3 nguyên => n-3\(\in\)Ư(14)={-14;-7;-2;-1;1;2;7;14}

ta có bảng

n-3-14-7-2-112714 
n-11-412451017 


Vậy n={-11;-4;-1;2;4;5;10;17}

5 tháng 5 2020

b) Ta co 3n+11=3(n-5)-4

=> 4 chia hết chia hết cho n+5 

n nguyên => n+5 nguyên

=> n+5\(\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

ta có bảng

n+5-4-2-1124
n-9-7-6-4-3-1

vậy n={-9;-7;-6;-4;-3;-1}

30 tháng 12 2016

Bài 1:

a) \(3x-\left(5-17\right)=2x+7\)

\(\Rightarrow3x+12=2x+7\)

\(\Rightarrow x+5=0\)

\(\Rightarrow x=-5\)

Vậy \(x=-5\)

b) \(10-\left(5-x\right)=30+\left(2x-3\right)\)

\(\Rightarrow10-5+x=30+2x-3\)

\(\Rightarrow5+x=27+2x\)

\(\Rightarrow x+22=0\)

\(\Rightarrow x=-22\)

Vậy \(x=-22\)

30 tháng 12 2016

Bài 2:

Giải:
a) Ta có: \(15⋮n-2\)

\(\Rightarrow n-2\in\left\{-1;1;-15;15\right\}\)

+) \(n-2=-1\Rightarrow n=1\)

+) \(n-2=1\Rightarrow n=3\)

+) \(n-2=-15\Rightarrow n=-13\)

+) \(n-2=15\Rightarrow n=17\)

Vậy \(n\in\left\{1;3;-13;-17\right\}\)

b) Ta có: \(n-2⋮n+1\)

\(\Rightarrow\left(n+1\right)-3⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;3;-3\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;2;-2;-4\right\}\)

c) Ta có: \(5n+3⋮n+1\)

\(\Rightarrow\left(5n+5\right)-2⋮n+1\)

\(\Rightarrow5\left(n+1\right)-2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;2;-2\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=2\Rightarrow n=1\)

+) \(n+1=-2\Rightarrow n=-3\)

Vậy \(n\in\left\{0;-2;1;-3\right\}\)

d) Ta có: \(n^2+n+7⋮n+1\)

\(\Rightarrow n\left(n+1\right)+7⋮n+1\)

\(\Rightarrow7⋮n+1\)

\(\Rightarrow n+1\in\left\{1;-1;7;-7\right\}\)

+) \(n+1=1\Rightarrow n=0\) ( t/m )

+) \(n+1=-1\Rightarrow n=-2\) ( t/m )

+) \(n+1=7\Rightarrow n=6\) ( t/m )

+) \(n+1=-7\Rightarrow n=-8\) ( không t/m )

Vậy \(n\in\left\{0;-2;6\right\}\)

16 tháng 10 2017