Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$
a)
\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$
Mà $\sqrt{x}-3\geq -3$ nên:
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$
$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)
\(a,\) Rút gọn
\(A=\dfrac{3}{\sqrt{7}-2}+\sqrt{\left(\sqrt{7}-3\right)^2}\)
\(=\dfrac{3}{\sqrt{7}-2}+\left|\sqrt{7}-3\right|\)
\(=\dfrac{3}{\sqrt{7}-2}+3-\sqrt{7}\)
\(=\dfrac{3+\left(3-\sqrt{7}\right)\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=\dfrac{3+3\sqrt{7}-6-7+2\sqrt{7}}{\sqrt{7}-2}\)
\(=\dfrac{5\sqrt{7}-10}{\sqrt{7}-2}\)
\(=\dfrac{5\left(\sqrt{7}-2\right)}{\sqrt{7}-2}\)
\(=5\)
Vậy \(A=5\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{x-1}{\sqrt{x}+1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}}{x-\sqrt{x}}.\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}-1\)
Vậy \(B=\sqrt{x}-1\)
\(b,\) Để \(B< A\) thì \(\sqrt{x}-1< 5\)
\(\Leftrightarrow\sqrt{x}< 6\)
\(\Leftrightarrow x< 36\)
\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\) đk: \(x\ge0,x\ne1\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right]-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{\left(x+1\right)-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}-\left(\sqrt{x}+1\right)\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{x+\sqrt{x}+1-\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
b)Để P<4 \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}< 4\) \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-4< 0\) \(\Leftrightarrow\dfrac{\sqrt{x}+2-4\left(\sqrt{x}-1\right)}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{6-3\sqrt{x}}{\sqrt{x}-1}< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-3\sqrt{x}>0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}6-3\sqrt{x}< 0\\\sqrt{x}-1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}< 1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}< 1\\\sqrt{x}>2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0\le x< 1\\x>4\end{matrix}\right.\)
Vậy...
c)\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\) \(=1+\dfrac{3}{\sqrt{x}-1}\)
Để P nguyên khi \(\dfrac{3}{\sqrt{x}-1}\) nguyên
\(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\in I\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-1\in Z\\\sqrt{x}-1\in I\end{matrix}\right.\)
Tại \(\sqrt{x}-1\in I\Rightarrow\dfrac{3}{\sqrt{x}-1}\notin Z\) (L)
Tại\(\sqrt{x}-1\in Z\) .Để \(\dfrac{3}{\sqrt{x}-1}\in Z\)
\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;-2;4\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{0;2;4\right\}\) \(\Leftrightarrow x\in\left\{0;4;16\right\}\) (tm)
\(A=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}+\dfrac{x}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{x}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}:\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\right)\)
\(=\dfrac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)^2}.\dfrac{\left(\sqrt{x}+2\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(A\ge\dfrac{1}{3\sqrt{x}}\Leftrightarrow\dfrac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}\ge\dfrac{1}{3\sqrt{x}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}+2}\ge\dfrac{1}{3}\Leftrightarrow\sqrt{x}+2\le3\)
\(\Rightarrow x\le1\)
Kết hợp ĐKXĐ \(\Rightarrow0< x\le1\)
a)A=\(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{-2}\)
=\(\dfrac{-2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{-2}\)
=\(\dfrac{2\sqrt{x}+1}{\sqrt{x}-1}\)
b)Ta có A = \(\dfrac{2\sqrt{x}+1}{\sqrt{x}-1}\)=2+\(\dfrac{2}{\sqrt{x}-1}\)
Để A nguyên thì \(\sqrt{x}-1\)∈Ư(2)
⇒x∈{4;0;9}
a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)
\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)
hay \(x\in\left\{0;4;9\right\}\)
Lời giải:
ĐKXĐ: $x>0; x\neq 4$
Sửa lại đề 1 chút.
\(A=\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right).\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{x}-2+\sqrt{x}+2}{(\sqrt{x}+2)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.\frac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\frac{2}{\sqrt{x}+2}\)
\(B=\frac{7}{3}A=\frac{14}{3(\sqrt{x}+2)}\)
Với mọi $x>0$ thì hiển nhiên $B>0$. Mặt khác, $\sqrt{x}+2\geq 2$ nên $B=\frac{14}{3(\sqrt{x}+2)}\leq \frac{14}{6}=\frac{7}{3}$
Vậy $0< B\leq \frac{7}{3}$. $B$ đạt giá trị nguyên thì $B=1;2$
$B=1\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=1$
$\Leftrightarrow x=\frac{64}{9}$ (thỏa mãn)
$B=2\Leftrightarrow \frac{14}{3(\sqrt{x}+2)}=2$
$\Leftrightarrow x=\frac{1}{9}$ (thỏa mãn)
e cảm ơn ạ