Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{1.9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=1-\frac{1}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{5}+\frac{1}{6}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(=0\)
8/9 - 1/72 - 1/56 - ... - 1/6 - 1/2
= 8/9 - [1/8*9 + 1/7*8 + ... + 1/2*3 + 1/1*2]
= 8/9 - [1/8 - 1/9 + 1/7 - 1/8 + ...+ 1/2 - 1/3 + 1 - 1/2]
= 8/9 - [-1/9 + 1]
= 8/9 - 8/9
= 0
Ta có: \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\dfrac{8}{9}=0\)
\(\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{1}{90}-\left(\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=\frac{-79}{90}\)
1/90 - 1/72 - 1/56 - ... - 1/6 - 1/2
= 1/90 - (1/2 + 1/6 + ... + 1/56 + 1/72)
= 1/90 - (1/1×2 + 1/2×3 + ... + 1/7×8 + 1/8×9)
= 1/90 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/7 - 1/8 + 1/8 - 1/9)
= 1/90 - (1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{20}+\frac{1}{12}+\frac{1}{6}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}\)
\(=0\)
1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= 1/90 - ( 1/2 + 1/6 + 1/12 + ...+ 1/72)
= 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9)
= 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9)
= 1/90 - ( 1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
1/90 - 1/72 - 1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
= 1/90 - ( 1/72 + 1/56 + 1/42 + 1/30 + 1/20 + 1/12 + 1/6 + 1/2)
= 1/90 - ( 1/2 + 1/6 + 1/12 + ...+ 1/72)
= 1/90 - ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9)
= 1/90 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9)
= 1/90 - ( 1 - 1/9)
= 1/90 - 8/9
= 1/90 - 80/90
= -79/90
mk nha cac ban
\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}=\dfrac{8}{9}-\left(\dfrac{1}{8.9}+\dfrac{1}{7.8}+\dfrac{1}{6.7}+\dfrac{1}{5.6}+\dfrac{1}{4.5}+\dfrac{1}{3.4}+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)=\dfrac{8}{9}-\left(\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{2}-\dfrac{1}{3}+1-\dfrac{1}{2}\right)=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)=\dfrac{8}{9}-\dfrac{8}{9}=0\)
\(\frac{8}{9}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(=\frac{8}{9}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{56}+\frac{1}{72}\right)\)
\(=\frac{8}{9}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}+\frac{1}{8.9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\left(1-\frac{1}{9}\right)\)
\(=\frac{8}{9}-\frac{8}{9}=0\)
thank you nhìu