K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HV
21 tháng 3 2020
Bài 1:
a,
OM là đường trung bình của tam giác BAC => OM = 1/2*BC
OM = 1/2*AB
=> AB=BC (đpcm).
b,
Tam giác ABC đều => BC = 2*r(O)
MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.
a) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow AC\bot BC\)
mà \(ON\bot BC\) (N là điểm chính giữa cung BC)
\(\Rightarrow CK\parallel EN\) mà \(NK\bot KC\Rightarrow NK\bot EN\)
\(\Rightarrow\angle KCE=\angle KNE=\angle CEN=90\Rightarrow ECKN\) là hình chữ nhật
\(\angle KNO=90\Rightarrow KN\) là tiếp tuyến
b) ECKN là hình chữ nhật \(\Rightarrow ECKN\) cũng nội tiếp
\(\Rightarrow\angle KEN=\angle KCN=\angle CNE\) \((KC\parallel NE)\)
Vì \(AC\parallel ND\) mà ACND nội tiếp \(\Rightarrow ACND\) là hình thang cân
\(\Rightarrow\angle CNE=\angle ADN\Rightarrow\angle KEN=\angle ADN\) \(\Rightarrow KE \parallel AD\)
mà \(KA\parallel ED\) \(\Rightarrow KEDA\) là hình bình hành
c) Vì \(\left\{{}\begin{matrix}MO\bot AC\\NK\bot AC\end{matrix}\right.\) \(\Rightarrow MO\parallel NK\) \(\Rightarrow\dfrac{NI}{IM}=\dfrac{NK}{MO}\Rightarrow\dfrac{NI}{NK}=\dfrac{MI}{MO}=\dfrac{MI}{R}\)
Vì M,N lần lượt là điểm chính giữa cung AC,BC \(\Rightarrow\angle MON=90\)
\(\Rightarrow MN=\sqrt{OM^2+ON^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)
Ta có: \(\dfrac{NI}{NK}+\dfrac{NI}{NO}=\dfrac{MI}{R}+\dfrac{NI}{R}=\dfrac{MI+NI}{R}=\dfrac{MN}{R}=\dfrac{\sqrt{2}R}{R}=\sqrt{2}\)
\(\Rightarrow NI\left(\dfrac{1}{NK}+\dfrac{1}{NO}\right)=\sqrt{2}\Rightarrow\dfrac{\sqrt{2}}{NI}=\dfrac{1}{NK}+\dfrac{1}{NO}\)
thank :3333