K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

A B C O D

Trên nửa mặt phẳng bờ BC chứa điểm A, dựng tam giác đều BCD, nối D với A.

\(\Delta\)BCD đều \(\Rightarrow\)BC=BD=DC và ^BDC=^DBC=^DCB=600.

\(\Delta\)ABC cân tại A \(\Rightarrow\)AB=AC.  Mà ^BAC=800 \(\Rightarrow\)^ABC=^ACB=500.

Xét \(\Delta\)BAD và \(\Delta\)CAD có:

AB=AC

AD chung    \(\Rightarrow\)\(\Delta\)BAD=\(\Delta\)CAD (c.c.c)

BD=CD 

\(\Rightarrow\)^BDA=^CDA (2 góc tương ứng) \(\Rightarrow\)^BDA=^CDA=^BDC/2=600/2=300.

Mà ^CBO=300 \(\Rightarrow\)^CDA=^CBO=300. Lại có: ^ACD=^DCB-^ACB=600-500=100\(\Rightarrow\)^ACD=^OCB=100.

Xét \(\Delta\)CAD và \(\Delta\)COB có:

^CDA=^CBO

DC=BC              \(\Rightarrow\)\(\Delta\)CAD=\(\Delta\)COB (g.c.g) \(\Rightarrow CA=CO\)(2 cạnh tương ứng)

^ACD=^OCB

\(\Delta COA\)cân tại C (đpcm)

7 tháng 1 2018

B C A M O

\(\Delta ABC\)cân tại A, \(\widehat{A}=80^o\)suy ra : \(\widehat{B}=\widehat{C}=50^o\)

Vẽ tam giác BCM đều ( M và A thuộc cùng một nửa mặt phẳng bờ BC ) 

\(\widehat{MCA}=60^o-50^o=10^o\)

\(\Delta AMB=\Delta AMC\)( c.c.c )

suy ra : \(\widehat{AMB}=\widehat{AMC}=60^o:2=30^o\)

\(\Delta OBC=\Delta AMC\)( g.c.g ) suy ra CO = CA do đó \(\Delta COA\)cân

21 tháng 5 2018

A B C O M

21 tháng 5 2018

vẽ tam giác đều BCM ( M và A cùng thuộc 1 nửa mặt phẳng bờ BC )

CM được tam giác COA cân tại C

\(\widehat{ACO}=45^o-15^o=30^o\)

\(\widehat{CAO}=\left(180^o-30^o\right):2=75^o\)

\(\widehat{BAO}=90^o-75^o=15^o\)\(\widehat{ABO}=45^o-30^o=15^o\)

Vậy \(\widehat{BAO}=\widehat{ABO}\)suy ra : \(\Delta AOB\)cân tại O

7 tháng 1 2018

Chịu tôi mới lop5 làm sao dc