Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{100}{25}=4\Rightarrow AB=6;AC=8\)cm
Mặt khác \(S_{ABC}=\dfrac{1}{2}.AB.AC;S_{ABC}=\dfrac{1}{2}.BC.AH\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}\)
A B C H
Áp dụng định lí py-ta-go vào \(\Delta ABC\left(\widehat{A}=90^o\right)\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=10^2=100\)
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Đặt \(\frac{AB}{3}=\frac{AC}{4}=K\left(K>0\right)\Rightarrow\hept{\begin{cases}AB=3K\\AC=4K\end{cases}}\)
Mà \(AB^2+AC^2=100\)
\(\Rightarrow9K^2+16K^2=100\)
\(\Rightarrow25K^2=100\)
\(\Rightarrow K^2=4\Rightarrow K=2\)
\(\Rightarrow AB=4cm;AC=8cm\)
Lại có: \(S_{\Delta ABC}=\frac{AH.BC}{2}=5AH\)
\(\Rightarrow24=5AH\Rightarrow AH=4,8cm\)
a)\(\Delta ABH\) vuông tại H có:
BH2 =AB2 -AH2 =132 -122 =25( ĐL Pytago)
=> BH=5 cm
BC=BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có:
AH2 + HC2 =AC2 ( đl Pytago)
=> AC2 =122 + 162 =20 cm
b) \(\Delta AHB\) vuông tại H có: AB2 = AH2 +BH2 ( ĐL Pytago)
=> BH2 =AB2 - AH2 =132 - 122 =25
=> BH=5 cm
BC= BH+HC=5+16=21 cm
\(\Delta AHC\) vuông tại H có: AC2 = AH2 +HC2 ( đL Pytago)
=> AC2 = 122 + 162 =400
=> AC= 20 cm
B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )
A B C H
Bài làm:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Vì tam giác ABC vuông tại A nên theo định lý Pytago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\frac{9}{16}AC^2+AC^2=100\)
\(\Leftrightarrow\frac{25}{16}AC^2=100\Leftrightarrow AC^2=64\Rightarrow AC=8\left(cm\right)\Rightarrow AB=\frac{3}{4}AC=6\left(cm\right)\)
Lại có: \(AB\cdot AC=AH\cdot BC\left(=2S_{ABC}\right)\)
\(\Leftrightarrow6\cdot8=10AH\Leftrightarrow AH=\frac{6\cdot8}{10}=\frac{24}{5}\left(cm\right)\)
Vậy AH = 24/5(cm)
Xét \(\Delta ABC\) vuông tại A có:
\(BC^2=AB^2+AC^2\) (định lí Pytago)
\(\Rightarrow AB^2+AC^2=10^2=100\)
Ta có: \(AB:AC=3:4\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{100^2}{25}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{AB^2}{9}=4\\\frac{AC^2}{16}=4\end{cases}}\Rightarrow\hept{\begin{cases}AB^2=36\\AC^2=64\end{cases}}\Rightarrow\hept{\begin{cases}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{cases}}\) (vì \(AB,AC>0\))
Ta có: \(S_{\Delta ABC}=\frac{AB.AC}{2}=\frac{AH.BC}{2}\)
\(\Rightarrow AB.AC=AH.BC\)
hay \(6.8=10AH\)
\(\Rightarrow AH=\frac{6.8}{10}=4,8\left(cm\right)\)
Vậy \(AH=4,8cm\).
Ta có : \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\dfrac{AB}{3}=\dfrac{AC}{4}\Rightarrow\dfrac{AB^2}{9}=\dfrac{AC^2}{16}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{AB^2+AC^2}{9+16}=\dfrac{BC^2}{25}=\dfrac{100}{25}=4\Rightarrow AB=6cm;AC=8cm\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức AH^2 = AB . AC
=> AH^2 = 48 => AH = 4\(\sqrt{3}\)cm
AC=8cm
AB=6cm
ta có: AH.BC=AC.AB
AH.10=8.6
AH=4,8cm