K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(\sqrt{8-\sqrt{15}}\)

\(=\dfrac{1}{\sqrt{2}}\cdot\sqrt{16-2\sqrt{15}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-1\right)=\dfrac{\sqrt{15}-1}{\sqrt{2}}=\dfrac{\sqrt{30}-\sqrt{2}}{2}\)

 

25 tháng 8 2021

\(\sqrt{12+2\sqrt{35}}=\sqrt{7+2\sqrt{7.5}+5}=\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}=\sqrt{7}+\sqrt{5}\)

25 tháng 8 2021

\(\sqrt{12+2\sqrt{35}}=\sqrt{5}+\sqrt{7}\)

24 tháng 9 2016

Cho mình sửa đề xí ạ! 

b) \(\frac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)

10 tháng 3 2022

Để hệ pt có nghiệm duy nhât \(\dfrac{a+1}{1}\ne\dfrac{-1}{a-1}\Leftrightarrow a^2-1\ne-1\Leftrightarrow a^2\ne0\Leftrightarrow a\ne0\)

\(\left\{{}\begin{matrix}\left(a^2-1\right)x-\left(a-1\right)y=a^2-1\\x+\left(a-1\right)y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2x=a^2+1\\y=\dfrac{2-x}{a-1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{a^2+1}{a^2}\\y=\dfrac{2-\dfrac{a^2+1}{a^2}}{a-1}=\dfrac{\dfrac{a^2-1}{a^2}}{a-1}=\dfrac{\left(a^2-1\right)\left(a-1\right)}{a^2}\end{matrix}\right.\)

Ta có \(\dfrac{a^2+1}{a^2}-\dfrac{\left(a^2-1\right)\left(a-1\right)}{a^2}=0\)

\(\Leftrightarrow a^2+1-a^3+a^2+a-1=0\)

\(\Leftrightarrow-a^3+2a^2+a=0\Leftrightarrow a^2-2a-1=0\)

\(\Leftrightarrow\left(a-1\right)^2-2=0\Leftrightarrow\left(a-1-\sqrt{2}\right)\left(a-1+\sqrt{2}\right)=0\Leftrightarrow a=1\pm\sqrt{2}\)

8:

BC=BH+CH=64+81=145cm

\(AB=\sqrt{BH\cdot BC}=8\sqrt{145}\left(cm\right)\)

\(AC=\sqrt{81\cdot145}=9\sqrt{145}\left(cm\right)\)

tan C=AB/AC=8/9

=>góc C=42 độ

=>góc B=48 độ

a) Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

nên ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

13 tháng 10 2021

Bài 9:

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x-3=-3x+7\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Bài 8:

a: Ta có: \(\sqrt{4x}=\sqrt{5}\)

\(\Leftrightarrow4x=5\)

hay \(x=\dfrac{5}{4}\)

b: Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}-6=0\)

\(\Leftrightarrow2\left|x-1\right|=6\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

c: Ta có: \(\sqrt{2x-3}=\sqrt{7}\)

\(\Leftrightarrow2x-3=7\)

hay x=5

d: Ta có: \(\sqrt{\left(3x-2\right)^2}=4\)

\(\Leftrightarrow\left|3x-2\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)

\(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{21}}{7}\)

15 tháng 8 2021

đoạn cuối thiếu dấu"+"

\(A=\dfrac{\sqrt{4}-\sqrt{5}}{4-5}+\dfrac{\sqrt{5}-\sqrt{6}}{5-6}+....+\dfrac{\sqrt{34}-\sqrt{35}}{34-35}+\dfrac{\sqrt{35}-\sqrt{36}}{335-36}\)

\(A=\dfrac{\sqrt{4}-\sqrt{5}+\sqrt{5}-\sqrt{6}+....+\sqrt{35}-\sqrt{36}}{-1}=\dfrac{\sqrt{4}-\sqrt{36}}{-1}\)

\(A=\sqrt{36}-\sqrt{4}=6-2=4\)

15 tháng 8 2021

mik cảm ơn ạ