Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 8 ⋮ 2n + 1
⇒ 2n + 1 + 7 ⋮ 2n + 1
⇒ 2n + 1 chia hết cho 2n + 1 và 7 chia hết cho 2n + 1
⇒ 7 chia hết cho 2n + 1
⇒ \(2n+1\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
⇒ \(2n\in\left\{0;-2;6;-8\right\}\)
⇒ \(n\in\left\{0;-1;3;-4\right\}\)
Vậy: ...
Theo bài ra ta có:
2n + 8 chia hết cho 2n + 1
=> ( 2n + 1 ) + 7 chia hết cho 2n + 1
=> 7 chia hết cho 2n + 1
=> 2n + 1 thuộc { 1 ; 7 }
=> 2n thuộc { 0 ; 6 }
=> n thuộc { 0 ; 3 }
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
a: Gọi d=ƯCLN(16n+5;6n+2)
=>16n+5 và 6n+2 chia hết cho d
=>48n+15-48n-16 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>ĐPCM
c: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>ĐPCM
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
\(1.3n+1\inƯ\left(10\right)\)
Ta lập bảng xét giá trị
3n+1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
3n | 0 | -2 | 1 | -3 | 4 | -6 | 9 | -11 |
n | 0 | -2/3 | 1/3 | -1 | 4/3 | -2 | 3 | -11/3 |
\(2.13⋮3n+1\)
\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
Ta lập bảng xét g trị
3n+1 | 1 | -1 | 13 | -13 |
n | 0 | -2/3 | 4 | -14/3 |
\(3.2n+8⋮2n+1\)
\(\Rightarrow\left(2n+1\right)+7⋮2n+1\)
\(\Rightarrow7⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 | 7 | -7 |
2n | 0 | -2 | 6 | -8 |
n | 0 | -1 | 3 | -4 |
\(4.6n+6⋮2n+1\)
\(\Rightarrow6n+3+1⋮2n+1\)
\(\Rightarrow3.\left(2n+1\right)+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta lập bảng xét g trị
2n+1 | 1 | -1 |
2n | 0 | -2 |
n | 0 | -1 |
a, 3 n . 3 = 243 => 3 n + 1 = 243 => 3 n + 1 = 3 5
=> n + 1 = 5 => n = 4
Vậy n = 4
b, 4 3 . 2 n + 1 = 1
=> 2 2 3 . 2 n + 1 = 1
=> 2 2 . 3 . 2 n + 1 = 1 => 2 6 . 2 n + 1 = 1
=> 2 6 + n + 1 = 1 => 2 n + 7 = 2 0
=> n + 7 = 0
Không tìm được số tự nhiên n thỏa mãn đầu bài
c, 2 n - 15 = 17
=> 2 n = 32 => 2 n = 2 5
=> n = 5
Vậy n = 5
d, 8 ≤ 2 n + 1 ≤ 64
=> 2 3 ≤ 2 n + 1 ≤ 2 6
=> 3 ≤ n + 1 và n+1 ≤ 6
=> 2 ≤ n và n ≤ 5
=> 2 ≤ n ≤ 5
Vậy 2 ≤ n ≤ 5
e, 9 < 3 n < 243
=> 3 2 < 3 n < 3 5
=> 2<n<5
Vậy 2<n<5
8⋮ 2n - 1 (đk n \(\ne\) \(\dfrac{1}{2}\))
2n - 1 \(\in\) Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
n \(\in\) {\(-\dfrac{7}{2}\); -\(\dfrac{3}{2}\); -\(\dfrac{1}{2}\); 0; 1; \(\dfrac{3}{2}\); \(\dfrac{5}{2}\); \(\dfrac{9}{2}\)}
đéo biết