Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x2 -7x + 10 = x2 - 2x - 5x + 10 = x(x - 2) - 5(x - 2) = (x - 5)(x - 2)
2) x2 + 3x + 2 = x2 + 2x + x + 2 = x(x + 2) + (x + 2) = (x + 1)(x + 2)
3) x2 - 7x + 12 = x2 - 3x - 4x + 12 = x(x - 3) - 4(x - 3) = (x - 3)(x - 4)
4) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x(x + 3) + 4(x + 3) = (x + 3)(x + 4)
5) 16x - 5x2 - 3 = 15x - 5x2 + x - 3 = -5x(x - 3) + (x - 3) = (x - 3)(1 - 5x)
6) 6x2 + 7x - 3 = 6x2 - 2x + 9x - 3 = 2x(3x - 1) + 3(3x - 1) = (2x + 3)(3x - 1)
7) 3x2 - 3x - 6 = 3x2 - 6x + 3x - 6 = 3x(x - 2) + 3(x - 2) = (x - 2)(3x + 3) = 3(x - 2)(x + 1)
8) 3x2 + 3x - 6 = 3x2 - 3x + 6x - 6 = 3x(x - 1) + 6(x - 1) = (x - 1)(3x + 6) = 3(x - 1)(x + 2)
9) 6x2 - 13x + 6 = 6x2 - 9x - 4x + 6 = 3x(2x - 3) - 2(2x - 3) = (3x - 2)(2x - 3)
10) 6x2 + 15x + 6 = 6x2 + 12x + 3x + 6 = 6x(x + 2) + 3(x + 2) = (x + 2)(6x + 3) = 3(x + 2)(3x + 1)
11) 6x2 - 20x + 6 = 6x2 - 18x - 2x + 6 = 6x(x -3) - 2(x - 3) = (6x - 2)(x - 3) = 2(3x - 1)(x - 3)
12) 8x2 + 5x - 3 = 8x2 + 8x - 3x - 3 = 8x(x + 1) - 3(x + 1) = (x + 1)(8x - 3)
a: \(\dfrac{x^2-5x+6}{x^2+7x+12}:\dfrac{x^2-4x+4}{x^2+3x}\)
\(=\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x+3\right)\left(x+4\right)}\cdot\dfrac{x\left(x+3\right)}{\left(x-2\right)^2}\)
\(=\dfrac{x\left(x-3\right)}{\left(x-2\right)\left(x+4\right)}\)
b: \(\dfrac{x^2+2x-3}{x^2+3x-10}:\dfrac{x^2+7x+12}{x^2-9x+14}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x-7\right)}{\left(x+3\right)\left(x+4\right)}\)
\(=\dfrac{\left(x-1\right)\left(x-7\right)}{\left(x+5\right)\left(x+4\right)}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4-4x^2+2x^3-8x+x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2x\left(x^2-4\right)+\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)
Đặt \(t=x^2-4\), ta có :
\(t\left(t-6\right)-72=0\)
\(\Leftrightarrow t^2-6t-72=0\)
\(\Leftrightarrow\left(t-12\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-12=0\\t+6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\left(tm\right)\\x^2+2=0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x=\pm4\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;-4\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(2x+1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\)\(x=-1\)
hoặc \(x=-\frac{1}{2}\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)
a, \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^3+x^2-4x-4\right)\left(x+1\right)=0\)
TH1 : \(x+1=0\Leftrightarrow x=-1\)
TH2 : \(x^3+x^2-4x-4=0\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
=> \(x=-1;x=\pm2\)
b, \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)
\(\Leftrightarrow x^4-14x^2+40=72\)
\(\Leftrightarrow x^4-14x^2-32=0\) Đặt \(x^2=t\left(t\ge0\right)\)
Ta có pt mới : \(t^2-14t-32=0\) Tự xử
4(3x+2) - 3(x-4) = 7x + 10
12x+8-3x+12-7x-10=0
2x+10=0
x=-5
Vây x=-5
4(3x+2) - 3(x-4) = 7x+10
12x + 8 - 3x +12 - 7x - 10 = 0
2x + 10 = 0
2x = 10
x=5
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
a, x/4 - 3x + 11 = 5/6 - x +7x
\(\frac{44-11x}{4}=\frac{36x+5}{6}\Rightarrow\left(44-11x\right)6=4\left(36x+5\right)\)
\(\Rightarrow264-66x=144x+20\)
\(\Rightarrow-210x=-244\)
\(\Rightarrow x=\frac{122}{105}\)
b,x^2 - 2x = 0
=>x(x-2)=0
=>x=0 hoặc x-2=0
=>x=0 hoặc x=2
c, x^2 - 7x - 10 =0
đề có khi sai
\(1,\\ a,=7x^3-49x^2+21x\\ b,=x^2-x-42\\ c,=x^2-16x+64\\ d,=9x^2+12x+4\\ e,=x^2-16-25+10x-x^2=10x-41\\ 2,\\ a,\Rightarrow2\left(x-7\right)=19\\ \Rightarrow x-7=\dfrac{19}{2}\Rightarrow x=\dfrac{33}{2}\\ b,\Rightarrow4x^2-20x+25-4x^2+3x-2x=50\\ \Rightarrow-19x=25\Rightarrow x=-\dfrac{25}{19}\)
\(-7x+4=7x-10\)
\(\Leftrightarrow-7x+4-7x+10=0\)
\(\Leftrightarrow-14x+14=0\)
\(\Leftrightarrow-14x=-14\)
\(\Leftrightarrow x=1\)
Vậy phương trình có tập nghiệm là \(S=\left\{1\right\}\)
-7x + 4 = 7x - 10
<=> -7x - 7x = -10 - 4
<=> -14x = -14
<=> x = 1
Vậy S = {1}