Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để ý rằng tất cả các biểu thức 2 vế của 4 bài đều không âm, cho nên ta bình phương 2 vế:
a/
\(\left(x^2-x+7\right)^2=\left(-5x+1\right)^2\)
\(\Leftrightarrow\left(x^2-x+7\right)^2-\left(-5x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2+4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2+4x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
b/
\(\left(x^2+9\right)^2=\left(-6x+1\right)^2\)
\(\Leftrightarrow\left(x^2+9\right)^2-\left(-6x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+6x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+10=0\left(vn\right)\\x^2+6x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
c/
\(\left(x^2+5x+7\right)^2-\left(3x+5\right)^2=0\)
\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+8x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
d/
\(\left(x^2+6x+9\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x^2+4x+6\right)\left(x^2+8x+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+6=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)
x2 - 6x + 9
= (x -3)2 (hàng đẳng thức đáng nhớ số 2)
x2 + x + 1/4
= x2 + 2.x.1/2 + 1/4
= (x +1/2)2 (hàng đẳng thức 1)
x2-6x+9=(x+3)2
x2+x+\(\frac{1}{4}\)=\(\left(x+\frac{1}{2}\right)^2\)
Học tốt!
\(f,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(t=x^2+5x+4\) , ta có
\(t\left(t+2\right)-24\)
\(=t^2+2t-24\)
\(=\left(t^2+2t+1\right)-25\)
\(=\left(t+1\right)^2-5^2\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
\(g,\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(t=x^2-8x+7\), ta có:
\(t\left(t+8\right)-20\)
\(=t^2+8t-20\)
\(=\left(t^2+8t+16\right)-36\)
\(=\left(t+4\right)^2-6^2\)
\(=\left(t+4+6\right)\left(t+4-6\right)\)
\(=\left(t+10\right)\left(t-2\right)\)
\(=\left(x^2-8x+7+10\right)\left(x^2-8x+7-2\right)\)
\(=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)
1,(2x + 3 ) \(^{^{ }2}\)=\(\left(2x\right)^2+2.2x.3+3^2\)
=\(4x^2+12x+9\)
2, ( 3x + 2y )\(^2=\left(3x\right)^2+2.3x.2y+\left(2y\right)^2\)
=\(9x^2+12xy+4y^2\)
3,(3a -1 )\(^2=\left(3a\right)^2-2.3a.1+1^2\)
\(=9a^2-6a+1\)
4, (a - 2 )\(^2=a^2-2.a.2+2^2\)
=\(a^2-4a+4\)
5, ( 1 - 5a )\(^2=1^2-2.1.5a+\left(5a\right)^2\)
=\(1-10a+25a\)
6, ( x - 4 )\(^3=x^3-3x^24+3x4^2-4^3\)
=\(x^3-12x^2+48x-64\)
talaays đơn thức nhân với từng hạng tử của đa thức
rồi cộng tích lại với nhau
rồi tìm x
nha bn
\(\dfrac{-6x^4+7x^3+5x+2}{3x+1}\)
\(=\dfrac{-6x^4-2x^3+9x^3+3x^2-3x^2-x+6x+2}{3x+1}\)
\(=\dfrac{-2x^3\left(3x+1\right)+3x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)}{3x+1}\)
\(=-2x^3+3x^2-x+2\)