K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

\(\dfrac{-6x^4+7x^3+5x+2}{3x+1}\)

\(=\dfrac{-6x^4-2x^3+9x^3+3x^2-3x^2-x+6x+2}{3x+1}\)

\(=\dfrac{-2x^3\left(3x+1\right)+3x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)}{3x+1}\)

\(=-2x^3+3x^2-x+2\)

 

NV
5 tháng 4 2019

Để ý rằng tất cả các biểu thức 2 vế của 4 bài đều không âm, cho nên ta bình phương 2 vế:

a/

\(\left(x^2-x+7\right)^2=\left(-5x+1\right)^2\)

\(\Leftrightarrow\left(x^2-x+7\right)^2-\left(-5x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2+4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2+4x+6=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

b/

\(\left(x^2+9\right)^2=\left(-6x+1\right)^2\)

\(\Leftrightarrow\left(x^2+9\right)^2-\left(-6x+1\right)^2=0\)

\(\Leftrightarrow\left(x^2-6x+10\right)\left(x^2+6x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+10=0\left(vn\right)\\x^2+6x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

NV
6 tháng 4 2019

c/

\(\left(x^2+5x+7\right)^2-\left(3x+5\right)^2=0\)

\(\Leftrightarrow\left(x^2+2x+2\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+2=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

d/

\(\left(x^2+6x+9\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x^2+4x+6\right)\left(x^2+8x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+6=0\left(vn\right)\\x^2+8x+12=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-6\end{matrix}\right.\)

x2 - 6x + 9 

= (x -3)2 (hàng đẳng thức đáng nhớ số 2)

x2 + x + 1/4 

= x2 + 2.x.1/2 + 1/4

= (x +1/2)2 (hàng đẳng thức 1)

12 tháng 9 2018

x2-6x+9=(x+3)2

x2+x+\(\frac{1}{4}\)=\(\left(x+\frac{1}{2}\right)^2\)

Học tốt!

27 tháng 8 2016

Giải giúp mình nhé.

13 tháng 10 2018

\(3x^4-5x^3-18x^2-3x+5\)

\(=\left(3x^4-6x^3-15x^2\right)+\left(x^3-2x^2-5x\right)-\left(x^2-2x-5\right)\)

\(=3x^2\left(x^2-2x-5\right)+x\left(x^2-2x-5\right)-\left(x^2-2x-5\right)\)

\(=\left(x^2-2x-5\right)\left(3x^2+x-1\right)\)

21 tháng 8 2017

\(f,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt \(t=x^2+5x+4\) , ta có
\(t\left(t+2\right)-24\)

\(=t^2+2t-24\)

\(=\left(t^2+2t+1\right)-25\)

\(=\left(t+1\right)^2-5^2\)

\(=\left(t+1-5\right)\left(t+1+5\right)\)

\(=\left(t-4\right)\left(t+6\right)\)

\(=\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(g,\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)

\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)

\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)

Đặt \(t=x^2-8x+7\), ta có:

\(t\left(t+8\right)-20\)

\(=t^2+8t-20\)

\(=\left(t^2+8t+16\right)-36\)

\(=\left(t+4\right)^2-6^2\)

\(=\left(t+4+6\right)\left(t+4-6\right)\)

\(=\left(t+10\right)\left(t-2\right)\)

\(=\left(x^2-8x+7+10\right)\left(x^2-8x+7-2\right)\)

\(=\left(x^2-8x+17\right)\left(x^2-8x+5\right)\)

1,(2x + 3 ) \(^{^{ }2}\)=\(\left(2x\right)^2+2.2x.3+3^2\)

=\(4x^2+12x+9\)

2, ( 3x + 2y )\(^2=\left(3x\right)^2+2.3x.2y+\left(2y\right)^2\)

=\(9x^2+12xy+4y^2\)

3,(3a -1 )\(^2=\left(3a\right)^2-2.3a.1+1^2\)

\(=9a^2-6a+1\)

4, (a - 2 )\(^2=a^2-2.a.2+2^2\)

=\(a^2-4a+4\)

5, ( 1 - 5a )\(^2=1^2-2.1.5a+\left(5a\right)^2\)

=\(1-10a+25a\)

6, ( x - 4 )\(^3=x^3-3x^24+3x4^2-4^3\)

=\(x^3-12x^2+48x-64\)

12 tháng 9 2016

talaays đơn thức nhân với từng hạng tử của đa thức

rồi cộng tích lại với nhau

rồi tìm x

nha bn

12 tháng 9 2016

bạn giải luôn giúp mình được không ạ?