Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-x^3+x^3-x^2-8x^2+8x+16x-16=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+x^2-8x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+4x^2-3x^2-12x+4x+16\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x^2-3x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\\\left(x-\dfrac{3}{2}\right)^2+\dfrac{7}{4}=0\left(vô.n_o\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Phương trình 16x2 − 24x + 9 = 0
có a = 16; b’ = −12; c = 9 suy ra
Δ ' = b ' 2 − a c = (−12)2 – 9.16 = 0
Nên phương trình có nghiệm kép
Đáp án cần chọn là: C
\(2x^2-7x+3=0\Leftrightarrow2x^2-x-6x+3=0\Leftrightarrow x\left(2x-1\right)-3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
\(2x^2-7x+3=0\Leftrightarrow x=\frac{-1\pm\sqrt{119}t}{12}\)
hoặc bn cho là vô nghiệm cx đc
\(16x^2+24x+9=0\Leftrightarrow\left(4x+3\right)^2=0\Leftrightarrow4x+3=0\Leftrightarrow x=-\frac{3}{4}\)
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
6x2+19y2+24x-2y+12xy-725=0
\(\Leftrightarrow6x^2+\left(12y+24\right)x-2y+19y^2-725=0\)
\(\Leftrightarrow\Delta=\left(12y+24\right)^2-4.6.\left(-2y+19y^2-725\right)\)
\(\Leftrightarrow144y^2+576y+576+48y-456y^2+17400\)
bữa sau sẽ trả lời tiếp
Với \(x,y\in Z\)
\(6x^2+19y^2+24x-2y+12xy-725=0\)
\(\Leftrightarrow6x^2+\left(12xy+24x\right)+19y^2-2y-725=0\)
\(\Leftrightarrow6x^2+\left(12y+24\right)x+19y^2-2y-725=0\)
\(\Leftrightarrow6x^2+2\left(6y+12\right)x+19y^2-2y-725=0\) \(\left(a=6,b'=6y+12,c=19y^2-2y-725\right)\)
\(\Delta'=\left(6y+12\right)^2-6\left(19y^2-2y-725\right)=36y^2+144y+144-114y^2+12y+4350\)
\(\Delta'=-78y^2+156y+4494=-78\left(y^2-2y+1\right)+78+4494=-78\left(y-1\right)^2+4572\)
PT có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow-78\left(y-1\right)^2+4572\ge0\Leftrightarrow-78\left(y-1\right)^2\ge-4572\)
\(\Leftrightarrow\left(y-1\right)^2\le\frac{762}{13}\)
\(\Leftrightarrow-\frac{\sqrt{9906}}{13}\le y-1\le\frac{\sqrt{9906}}{13}\), mà \(y\in Z\) \(\Rightarrow-7\le y-1\le7\left(1\right)\)
Với PT có nghiệm, ta có: \(x=\frac{-b'\pm\sqrt{\Delta'}}{a}\)
\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{-\left(12y+24\right)}{6}=-2y-4\\x_1x_2=\frac{c}{a}=\frac{19y^2-2y-725}{6}=\frac{y^2-2y+1+18y^2-726}{6}=3y^2-121+\frac{\left(y-1\right)^2}{6}\end{cases}}\)
Để \(x\in Z\), thì \(\hept{\begin{cases}x_1+x_2\in Z\\x_1x_2\in Z\end{cases}}\Leftrightarrow\hept{\begin{cases}-2y-4\in Z\\3y^2-121+\frac{\left(y-1\right)^2}{6}\in Z\end{cases}\Leftrightarrow}\frac{\left(y-1\right)^2}{6}\in Z\) (vì \(y\in Z\))
Và \(\Delta'\) là số chính phương.
* \(\frac{\left(y-1\right)^2}{6}\in Z\Leftrightarrow\left(y-1\right)^2⋮6\Leftrightarrow y-1⋮6\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow y-1\in\left\{-6;0;6\right\}\Leftrightarrow y\in\left\{-5;1;7\right\}\)
* \(\Delta'\) là số chính phương \(\Leftrightarrow-78\left(y-1\right)^2+4572\) là số chính phương
- Thử \(y=-5\), thì \(\Delta'=-78\left(-5-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)
- Thử \(y=1\), thì \(\Delta'=-78\left(1-1\right)^2+4572=4572\) (4572 không phải là số chính phương)
- Thử \(y=7\), thì \(\Delta'=-78\left(7-1\right)^2+4572=-2808+4572=1764\) (1764 là số chính phương)
Từ đó, với \(y\in\left\{-5;7\right\}\) thì \(\Delta'=1764\) là số chính phương. \(\Rightarrow\sqrt{\Delta'}=42\)
PT có nghiệm thì:
\(x=\frac{-b'\pm\sqrt{\Delta'}}{a}=\frac{-6y-12\pm42}{6}=-y-2\pm7\)
- Với \(y=-5\), thì \(x=5-2\pm7\Leftrightarrow x\in\left\{-4;10\right\}\) (tmđk)
- Với \(y=7\), thì \(x=-7-2\pm7\Leftrightarrow x\in\left\{-16;-2\right\}\) (tmđk)
Vậy phương trình có các nghiệm nguyên \(\left(x;y\right)=\left(-4;-5\right),\left(10;-5\right),\left(-16;7\right),\left(-2;7\right)\).
\(x=-0,206885594\) nhé =)