Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
↔\(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
↔\(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
↔\(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\)→\(\left[\begin{array}{nghiempt}x+y+xy=-6\\x+y+xy=4\end{array}\right.\)
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ\(\left\{\left(0;-6\right),\left(4;-2\right)...\right\}\)
Th còn lại giải tương tự
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow1+x^2y^2+x^2+y^2+4xy+2\left(x+y\right)+2\left(x+y\right)xy=25\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(xy+1\right)=25\)
\(\Leftrightarrow\left(x+y\right)^2+\left(xy+1\right)^2+2\left(x+y\right)\left(xy+1\right)=25\)
\(\Leftrightarrow\left(x+y+xy+1\right)^2=25\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=\pm5\)
Dễ nhé tự lm tiếp
Ở câu b, bậc của y là bậc nhất nên có thể rút y theo x
\(y=\frac{112-2x^2+x}{2x+1}=\frac{-x\left(2x+1\right)+2x+1+111}{2x+1}=-x+1+\frac{111}{2x+1}\)
\(\Rightarrow2x+1\in\text{Ư}\left(111\right)=\left\{111;37;3;1;-111;-37;-3;-1\right\}\)
\(\Rightarrow x\in\left\{...\right\}\)