Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 12:
a) \(\left(\dfrac{1}{2}x+4\right)^2\)
\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)
\(=\dfrac{1}{4}x^2+4x+16\)
b) \(\left(7x-5y\right)^2\)
\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)
\(=49x^2-70xy+25y^2\)
c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)
\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)
\(=y^4-36x^4\)
d) \(\left(x+2y\right)^2\)
\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)
\(=x^2+4xy+4y^2\)
e) \(\left(x-3y\right)\left(x+3y\right)\)
\(=x^2-\left(3y\right)^2\)
\(=x^2-9y^2\)
f) \(\left(5-x\right)^2\)
\(=5^2-2\cdot5\cdot x+x^2\)
\(=25-10x+x^2\)
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21
\(7x^2\left(x^2-5x+2\right)-5x\left(x^3-7x^2+3x\right)\)
\(=7x^4-35x^3+14x^2-5x^4+35x^3-15x^2\)
\(=2x^4-x^2\)
Thay: \(x=-\frac{1}{2}\) vào được
\(2.\left(-\frac{1}{2}\right)^4-\left(-\frac{1}{2}\right)^2\)
\(=2.\frac{1}{16}-\frac{1}{4}\)
\(=\frac{1}{8}-\frac{1}{4}=\frac{1}{8}-\frac{2}{8}=-\frac{1}{8}\)
P/s: Ko chắc
A. ( x -5 ) ( 7x + 1 ) - 7x ( x + 3)
= 7x2 + x - 35x - 5 - 7x2 - 21x
= (7x2-7x2) + (x - 35x - 21x) -5
= -56x - 5
B = (x2 - 2x.2 + 22) - x2 + 12
B = (x2 - x2) - 4x + (2 + 1)
B= -4x +3
A. (x - 5)(7x + 1) - 7x(x + 3)
= 7x² + x - 35x - 5 - 7x² - 21x
= (7x² - 7x²) + (x - 35x - 21x) - 5
= -55x - 5
B. (x - 2)² - (x - 1)(x + 1)
= x² - 4x + 4 - x² + 1
= (x² - x²) - 4x + (4 + 1)
= -4x + 5
`4)x^2-5x+6`
`=x^2-2x-3x+6`
`=x(x-2)-3(x-2)=(x-2)(x-3)`
`5)x^2+7x+10`
`=x^2+5x+2x+10`
`=x(x+5)+2(x+5)=(x+5)(x+2)`
`6)x+7\sqrt{x}+10` `ĐK: x >= 0`
`=(\sqrt{x})^2+5\sqrt{x}+2\sqrt{x}+10`
`=\sqrt{x}(\sqrt{x}+5)+2(\sqrt{x}+5)=(\sqrt{x}+5)(\sqrt{x}+2)`
`7)3x^4+7x^2+4`
`=3x^4+3x^2+4x^2+4`
`=3x^2(x^2+1)+4(x^2+1)=(x^2+1)(3x^2+4)`
`8)x^2-x-2`
`=x^2-2x+x-2`
`=x(x-2)+(x-2)=(x-2)(x+1)`
`9)x^6-x^3-2`
`=x^6+x^3-2x^3-2`
`=x^3(x^3+1)-2(x^3+1)`
`=(x^3+1)(x^3-2)`.
\(x^2+6x+5=x^2+5x+x+5=x\left(x+5\right)+\left(x+5\right)=\left(x+1\right)\left(x+5\right)\)
\(x^2-7x+12=x^2-4x-3x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-3\right)\left(x-4\right)\)
\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
\(a,x^2+6x+5=x^2+5x+x+5\)
\(=x\left(x+5\right)+\left(x+5\right)=\left(x+5\right)\left(x+1\right)\)
\(b,\)\(x^2-7x+12=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
\(c,\)\(x^2-7x+10=x^2-2x-5x+10\)
\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
\(\left(7x+3\right)^2-\left(7x-1\right)\left(7x-3\right)=-12\)
\(\Rightarrow49x^2+42x+9-\left(49x^2-21x-7x+3\right)=-12\)
\(\Rightarrow70x+18=0\) \(\Rightarrow x=-\dfrac{18}{70}=-\dfrac{9}{35}\)
7x2 - 14x = 0
7x(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)