Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
a) \(7x^2-16x=2x^3-56\)
\(\Leftrightarrow\)\(2x^3-7x^2+16x-56=0\)
\(\Leftrightarrow\)\(2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x-7\right)\left(x^2+8\right)=0\)
\(\Leftrightarrow\)\(2x-7=0\)
\(\Leftrightarrow\)\(x=3,5\)
Vậy...
b) \(x^7+x^3+2x^5+2x=0\)
\(\Leftrightarrow\)\(x.\left(x^6+x^2+2x^4+2\right)=0\)
\(\Leftrightarrow\)\(x\left(x^2+2\right)\left(x^4+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy...
c) \(\left(2x+1\right)x-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(2x\left(x+\frac{1}{2}\right)-5\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\left(2x-5\right)\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-5=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2,5\\x=-0,5\end{cases}}\)
Vậy...
a: \(\Leftrightarrow2x^3-56-7x^2+16x=0\)
\(\Leftrightarrow2x\left(x^2+8\right)-7\left(x^2+8\right)=0\)
=>2x-7=0
hay x=7/2
b: \(\Leftrightarrow x^5\left(x^2+2\right)+x\left(x^2+2\right)=0\)
=>x(x2+2)(x4+1)=0
=>x=0
c: \(\Leftrightarrow2x^2+x-5x-\dfrac{5}{2}=0\)
\(\Leftrightarrow2x^2-4x-\dfrac{5}{2}=0\)
hay \(x\in\left\{\dfrac{5}{2};-\dfrac{1}{2}\right\}\)
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................
a)\(x^2+3x+6=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{15}{4}=0\)
\(\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\)
Vì bình phương luôn lớn hơn hoặc bằng 0
Nên PT vô nghiệm
b)\(x^2-2x-3=0\)
\(x^2-3x+x-3=0\)
\(\left(x+1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
d)\(x^3-2x^2-x+2=0\)
\(x^2\left(x-2\right)-\left(x-2\right)=0\)
\(\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
x - 2 = 0 x=2
c)\(2x^2+7x+3=0\)
\(2x^2+x+6x+3=0\)
\(x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\left(2x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\x+3=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=-3\end{cases}}\)
a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)
\(\Leftrightarrow2x^2+4x-4=0\)
\(\Leftrightarrow x^2+2x-2=0\)
\(\Leftrightarrow x^2+2x+1-3=0\)
\(\Leftrightarrow\left(x+1\right)^2=3\)
hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)
b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)
\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)
=>6=0(vô lý)
c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)
=>x=-2 hoặc x=2
đ: \(\Rightarrow2x^2-2x-5x+5=0\)
=>(x-1)(2x-5)=0
=>x=1 hoặc x=5/2
a) (5x + 3)(x2 + 4)(x - 4) = 0
<=> 5x + 3 = 0 hoặc x - 4 = 0
<=> x = -3/5 hoặc x = 4
b) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc c = 1/2 hoặc x = -3
(5x +3)(x^2+4)(x-4)=0
\(\Rightarrow\hept{\begin{cases}5x+3=0\\x^2+4=0\\x-4=0\end{cases}}\) nhớ là dùng ngoặc vuông nhé vì olm k cho dùng ngoặc [ cho 3 cái
\(\Leftrightarrow\hept{\begin{cases}5x=3\\x^2=-4\\x=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{5}\\x\in\left\{\varnothing\right\}\\x=4\end{cases}}\)
vậy pt có nghiệm ....
câu b làm tương tự nhé!
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
ta có
\(\left(7x-2x\right)\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow5x.\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x=0\\2x-1=0\end{cases}}\) hoặc \(x+3=0\)
hay ta có \(x\in\left\{0;\frac{1}{2};-3\right\}\)