Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=7+7^2+7^3+7^4+...+7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(A=7.400+7^5.400+...+7^{4n-3}.400\)
\(A=400.\left(7+7^5+..+7^{4n-3}\right)\)luôn chia hết cho 400
A=7+72+74+74+...+74n-3+74n-2+74n-1+74n
A=(7+72+73+74)+...+(74n-3+74n-2+74n-1+74n)
A=7(1+7+72+73)+...+74n-3(1+7+72+73)
A=7.400+75.400+...+74n-3.400
A=400.(7+75+..+74n-3)luôn chia hết cho 400
Ta có :
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+49+343\right)+...+7^{4n-3}\left(1+7+49+343\right)\)
\(A=7.400+...+7^{4n-3}.400\)
\(A=400\left(7+...+7^{4n-3}\right)⋮400\)
Vậy \(A⋮400\)
Chúc bạn học tốt ~
ta nhóm 4 số thành 1 nhóm
A = \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+....\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^n\right)\) +\(7^n\))
A = \(\left(1+7+7^2+7^3\right).7+\left(1+7+7^2+7^3\right).7^5+...\left(1+7+7^2+7^3\right).7^{4n-3}\)
A = \(\left(1+7+7^2+7^3\right).\left(7+7^5+...+7^{4n-3}\right)\)
A = \(400.\left(7+7^5+...+7^{4n-3}\right)\)
=> A \(⋮\)400
a) 87 - 218
= (23)7 - 218
= 221 - 218
= 218.(23 - 1)
= 218.(8 - 1)
= 217.2.7
= 217.14 chia hết cho 14 (đpcm)
b) 106 - 57
= 26.56 - 57
= 56.(26 - 5)
= 56.(64 - 5)
= 56.59 chia hết cho 59 (đpcm)
Bài 2:
Ta có: \(\frac{\left(3^3\right)^2.\left(2^3\right)^5}{\left(2.3\right)^6.\left(2^5\right)^3}\)\(=\frac{3^6.2^{15}}{2^6.3^6.2^{15}}\)\(\frac{1}{2^6}=\frac{1}{64}\)
Chúc hk tốt nha!!!
\(A=7+7^2+7^3+7^4+.............+7^{4n}\)
\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+........+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+...........+7^{4n-3}.400\)
\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\left(đpcm\right)\)
\(A=7+7^2+7^3+7^4+...+7^{4n}\)
\(=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(=7\cdot400+...+7^{4n-3}\cdot400\)
\(=400\left(7+...+7^{4n-3}\right)⋮400\forall n\in N\)