K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2017

454 la dap an

8 tháng 2 2017

\(777\div7-\left(10\times10\right)=x\div9\)

                                 \(111-100=x\div9\)

                                            \(x\div9=111-100\)

                                                 \(x\div9=11\)

                                                   \(x=11\times9\)

                                                         \(x=99\)

22 tháng 8 2017

3B = 9 + 99 + 999 +...+ 999...99 (100 chữ số 9)
= (10 - 1) + (100 - 1) + (1000 - 1) +... + (100...00 - 1) (100 chữ số 0)
= 10 + 10^2 + 10^3 +...+ 10^100 - 100 (1)
30B = 10^2 + 10^3 + 10^4 ...+ 10^101 - 1000 (2)
Lấy (2) - (1) vế với vế:
27B = 10^101 - 900 - 10 => S = (1/27)(10^101 - 910)
Tổng quát:
Bn = 3 + 33 +...+ 33...3 (n chữ số 3) = (1/27)[10^(n + 1) - 9n - 10]

Chúc Bạn Học Tốt ,đạt nhiều thành tích tốt trong học tập

22 tháng 8 2017

\(C=7+77+777+...+777...777\left(100\text{ số }7\right)\\ C=7\cdot\left(1+11+111+...+111...111\left(100\text{ số }1\right)\right)\\ 9C=7\cdot9\cdot\left(1+11+111+...+111...111\left(100\text{ số }1\right)\right)\\ 9C=7\cdot\left(9+99+999+...+999...999\left(100\text{ số }9\right)\right)\\ 9C=7\cdot\left(10-1+100-1+1000-1+...+100...000-1\left(100\text{ số }0\right)\right)\\ 9C=7\cdot\left(10^1+10^2+10^3+...+10^{100}-100\right)\\ 90C=7\cdot10\cdot\left(10^1+10^2+10^3+...+10^{100}-100\right)\\ 90C=7\cdot\left(10^2+10^3+10^4+...+10^{101}-1000\right)\\ 90C-9C=\left[7\cdot\left(10^1+10^2+10^3+...+10^{100}-100\right)\right]-\left[7\cdot\left(10^2+10^3+10^4+...+10^{101}-1000\right)\right]\\ 81C=7\left[\left(10^2+10^3+10^4+...+10^{101}-1000\right)-\left(10^1+10^2+10^3+...+10^{100}-100\right)\right]\\ 81C=7\cdot\left(10^{101}-1000-10+100\right)\\ 81C=7\cdot\left(10^{101}-910\right)\\ C=\dfrac{7\cdot\left(10^{101}-910\right)}{81}\)

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

17 tháng 10 2019

a,\(5^{70}+7^{50}=25^{35}+49^{50}\)

N/x: 25 và 49 chia 12 đều dư 1 -> tổng chia 12 dư 2

b.\(776^{776}+777^{777}+778^{778}\equiv\left(-1\right)^{776}+0+1^{776}\equiv2\)(mod 3)

-> chia 3 dư 2

\(776^{776}+777^{777}+778^{778}\equiv1+2^{777}+\left(-2\right)^{778}\equiv1+4^{388}\cdot2+4^{389}\equiv1+2\cdot\left(-1\right)^{388}+\left(-1\right)^{389}\equiv1+2-1\equiv2\)

->chia 5 dư 2