Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
50) \(\sqrt{98-16\sqrt{3}}=4\sqrt{6}-\sqrt{2}\)
51) \(\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{2}\)
52) \(\sqrt{4+\sqrt{15}}=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{6}}{2}\)
53) \(\sqrt{5-\sqrt{21}}=\dfrac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{6}}{2}\)
54) \(\sqrt{6-\sqrt{35}}=\dfrac{\sqrt{12-2\sqrt{35}}}{\sqrt{2}}=\dfrac{\sqrt{14}-\sqrt{10}}{2}\)
55) \(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{6}+\sqrt{2}}{2}\)
56) \(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)
`a)A=(3-sqrt5)sqrt{3+sqrt5}+(3+sqrt5)sqrt{3-sqrt5}`
`=sqrt{3-sqrt5}sqrt{3+sqrt5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt{9-5}(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=2(sqrt{3+sqrt5}+sqrt{3-sqrt5})`
`=sqrt2(sqrt{6+2sqrt5}+sqrt{6-2sqrt5})`
`=sqrt2(sqrt{(sqrt5+1)^2}+sqrt{(sqrt5+1)^2})`
`=sqrt2(sqrt5+1+sqrt5-1)`
`=sqrt{2}.2sqrt5`
`=2sqrt{10}`
`b)B=(5+sqrt{21})(sqrt{14}-sqrt6)sqrt{5-sqrt{21}}`
`=sqrt{5+sqrt{21}}sqrt{5-sqrt{21}}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=sqrt{25-21}sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt{5+sqrt{21}}(sqrt{14}-sqrt6)`
`=2sqrt2sqrt{5+sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{10+2sqrt{21}}(sqrt{7}-sqrt3)`
`=2sqrt{(sqrt3+sqrt7)^2}(sqrt{7}-sqrt3)`
`=2(sqrt3+sqrt7)(sqrt{7}-sqrt3)`
`=2(7-3)`
`=8`
`c)C=sqrt{4+sqrt7}-sqrt{4-sqrt7}`
`=sqrt{(8+2sqrt7)/2}-sqrt{(8-2sqrt7)/2}`
`=sqrt{(sqrt7+1)^2/2}-sqrt{(sqrt7+1)^2/2}`
`=(sqrt7+1)/sqrt2-(sqrt7-1)/2`
`=2/sqrt2=sqrt2`
`sqrt{5+2sqrt6}`
`=sqrt{3+2sqrt3sqrt2+2}`
`=sqrt{(sqrt3+sqrt2)^2}`
`=|sqrt3+sqrt2|=sqrt3+sqrt2`
`7. sqrt(4+2sqrt3)`
`=sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`8. sqrt(4-2sqrt3)`
`=sqrt{3-2sqrt3+1}`
`=sqrt{(sqrt3-1)^2}`
`=sqrt3-1`
`9. sqrt(11-2sqrt(30))`
`=sqrt{6-2sqrt5sqrt6+5}`
`=sqrt{(sqrt6-sqrt5)^2}`
`=sqrt6-sqrt5`
`10. sqrt(21-4sqrt(17))`
`=sqrt{17-2.2.sqrt{17}+4}`
`=sqrt{(sqrt{17}-2)^2}`
`=sqrt{17}-2`
14dm5cm=14,5dm;3dm7cm=3,7dm
chu vi hình chữ nhật đó là:
(14,5+3,7)x2=36,4(dm)
ĐS:36,4dm
14 dm 5 cm = 14,5 dm
3 dm 7 cm = 3,7 dm
Chiều rộng HCN là :
14,5 - 3,7 = 10,8 ( dm )
chu vi HCN là :
( 14,5 + 10,8 ) x 2 = 50,6 ( dm )
ĐS:..
i) \(\sqrt{8-3\sqrt{7}}+\sqrt{4-\sqrt{7}}=\sqrt{\dfrac{16-6\sqrt{7}}{2}}+\sqrt{\dfrac{8-2\sqrt{7}}{2}}\)
\(=\sqrt{\dfrac{\left(3-\sqrt{7}\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{7}-1\right)^2}{2}}=\dfrac{\left|3-\sqrt{7}\right|}{\sqrt{2}}+\dfrac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)
\(=\dfrac{3-\sqrt{7}}{\sqrt{2}}+\dfrac{\sqrt{7}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
j) \(\sqrt{5+\sqrt{21}}-\sqrt{5-\sqrt{21}}=\sqrt{\dfrac{10+2\sqrt{21}}{2}}-\sqrt{\dfrac{10-2\sqrt{21}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2}{2}}-\sqrt{\dfrac{\left(\sqrt{7}-\sqrt{3}\right)^2}{2}}=\dfrac{\left|\sqrt{7}+\sqrt{3}\right|}{\sqrt{2}}-\dfrac{\left|\sqrt{7}-\sqrt{3}\right|}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{7}-\sqrt{3}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
Bài 1:
1) Ta có: \(3-2\sqrt{2}\)
\(=2-2\cdot\sqrt{2}\cdot1+1\)
\(=\left(\sqrt{2}-1\right)^2\)
2) Ta có: \(8+2\sqrt{7}\)
\(=7+2\cdot\sqrt{7}\cdot1+1\)
\(=\left(\sqrt{7}+1\right)^2\)
3) Ta có: \(x-2\sqrt{x-1}\)
\(=x-1-2\cdot\sqrt{x-1}\cdot1+1\)
\(=\left(\sqrt{x-1}-1\right)^2\)
4) Ta có: \(6-4\sqrt{2}\)
\(=4-2\cdot2\cdot\sqrt{2}+2\)
\(=\left(2-\sqrt{2}\right)^2\)
5) Ta có: \(7+4\sqrt{3}\)
\(=4+2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2+\sqrt{3}\right)^2\)
6) Ta có: \(9-4\sqrt{5}\)
\(=5-2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}-2\right)^2\)
7) Ta có: \(10+2\sqrt{21}\)
\(=7+2\cdot\sqrt{7}\cdot\sqrt{3}+3\)
\(=\left(\sqrt{7}+\sqrt{3}\right)^2\)
8) Ta có: \(49+20\sqrt{6}\)
\(=25+2\cdot5\cdot2\sqrt{6}+24\)
\(=\left(5+2\sqrt{6}\right)^2\)
\(\dfrac{7\sqrt{3}-3\sqrt{7}}{\sqrt{7}-\sqrt{3}}+\dfrac{4}{5-\sqrt{21}}-\dfrac{6\sqrt{7}}{\sqrt{3}}=\dfrac{\sqrt{3}\sqrt{7}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{7}-\sqrt{3}}+\dfrac{4\left(5+\sqrt{21}\right)}{4}-\dfrac{\sqrt{252}}{\sqrt{3}}=\sqrt{21}+5+\sqrt{21}-2\sqrt{21}=5\)