Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+2}{3}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2\left(x+2\right)}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2x+4}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{2x+4-\left(y-1\right)+z+5}{6-4+7}=\frac{2x+4-y+1+z+5}{6-4+7}=\frac{\left(2x-y+z\right)+\left(4+1+5\right)}{6-4+7}\)
\(=\frac{17+10}{9}=\frac{27}{9}=3\)
Suy ra: \(2x+4=6.3\Rightarrow2x=14\Rightarrow x=7\)
\(y-1=3.4\Rightarrow y=13\)
\(z+5=3.7\Rightarrow z=16\)
Vậy x = 7 ; y = 13; z = 16
ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
ta có
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)
\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)
từ đó bạn tính ra nha
a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)
suy ra :
\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)
\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)
\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)
bạn xem lại đề ra số hơi xấu
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
\(\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{5}{z+4}\Rightarrow\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{10}{2z+8}\)(*)
Theo t/c dãy tỉ số bằng nhau
(*) = \(\dfrac{7+3+10}{2x+2y+2z+6}=\dfrac{20}{34+6}=\dfrac{20}{40}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{2x+2}{7}=2\Leftrightarrow x=6;\dfrac{2y-4}{3}=2\Leftrightarrow y=5;\dfrac{2z+8}{10}=2\Leftrightarrow z=6\)
mình chỉ làm 1 phần thui nhé,lười lắm
x/2=y/3=>3x=2y
=>x=15:(3-2).2=30
y=30+15 =45
mk ko hiểu