Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)C= 1/5+1/10+1/20+1/40+...+1/1280
\(=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
Đặt cái trong ngoặc là A ta có:\(2A=2+1+...+\frac{1}{2^7}\)
\(2A-A=\left(2+1+...+\frac{1}{2^7}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
\(A=2-\frac{1}{2^8}\).Thay A vào ta được:\(C=\frac{1}{5}\left(2-\frac{1}{2^8}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
2)D= 2/1*3+2/3*5+2/5*10+2/7*9+2/9*11+2/11*18+2/13*15
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
3)E= 4/3*7+4/7*11+4/11*15+4/15*19+4/19*23+4/23*27
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
4)G= 1/2+1/6+1/12+1/20+1/30+1/42+...+1/110
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
5)H= 3/1*2+3/2*3+3/3*4+3/4*5+...+3/9*10
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=3\left(1-\frac{1}{10}\right)\)
\(=3\times\frac{9}{10}\)
\(=\frac{27}{10}\).Lần sau bạn đăng ít một thôi nhé
Giải:
a) \(2\dfrac{17}{20}-1\dfrac{15}{11}+6\dfrac{9}{20}:3\)
\(=\dfrac{57}{20}-\dfrac{26}{11}+\dfrac{129}{20}:3\)
\(=\dfrac{107}{220}+\dfrac{43}{20}\)
\(=\dfrac{29}{11}\)
b) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\)
\(=\dfrac{31}{7}:\left(\dfrac{7}{5}.\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}\)
\(=\dfrac{5}{7}\)
c) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\)
\(=\left(\dfrac{29}{9}.\dfrac{15}{23}.\dfrac{36}{29}\right):\dfrac{5}{23}\)
\(=\dfrac{60}{23}:\dfrac{5}{23}\)
\(=12\)
Bài 1
a: 11/12=1-1/12
23/24=1-1/24
mà -1/12>-1/24
nên 11/12>23/24
b: -3/20=-9/60
-7/12=-35/60
mà -9>-35
nên -3/20>-7/12
a) \(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
b) Ta có : A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
a, \(\dfrac{5}{1.3}\)+\(\dfrac{5}{3.5}\)+\(\dfrac{5}{5.7}\)+...+\(\dfrac{5}{99.101}\)
= 5.\(\dfrac{1}{1.3}\)+5.\(\dfrac{1}{3.5}\)+5.\(\dfrac{1}{5.7}\)+...+5.\(\dfrac{1}{99.101}\)
=5.(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{99.101}\))
=5.(\(\dfrac{2}{2}\).\(\dfrac{1}{1.3}\)+\(\dfrac{2}{2}\).\(\dfrac{1}{3.5}\)+\(\dfrac{2}{2}\).\(\dfrac{1}{5.7}\)+...+\(\dfrac{2}{2}\).\(\dfrac{1}{99.101}\))
=\(\dfrac{5}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{99.101}\))
=\(\dfrac{5}{2}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{99}\)-\(\dfrac{1}{101}\))
=\(\dfrac{5}{2}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{101}\))
=\(\dfrac{5}{2}\).\(\dfrac{100}{101}\)
=\(\dfrac{250}{101}\)
=\(2\dfrac{48}{101}\)
b,\(\dfrac{-11}{23}\).\(\dfrac{6}{7}\)+\(\dfrac{8}{7}\).\(\dfrac{-11}{23}\)-\(\dfrac{1}{23}\)
=\(\dfrac{-11}{23}\).(\(\dfrac{6}{7}\)+\(\dfrac{8}{7}\))-\(\dfrac{1}{23}\)
=\(\dfrac{-11}{23}\).2-\(\dfrac{1}{23}\)
=\(\dfrac{-22}{23}\)-\(\dfrac{1}{23}\)
=-1
c,\(\dfrac{2.3}{7}\)+(\(\dfrac{2}{9}\)-\(1\dfrac{1}{3}\))-\(\dfrac{5}{3}\):\(\dfrac{1}{9}\)
=\(\dfrac{6}{7}\)+(\(\dfrac{2}{9}\)-\(\dfrac{4}{3}\))-\(\dfrac{5}{3}\).9
=\(\dfrac{6}{7}\)-\(\dfrac{10}{9}\)-\(\dfrac{5}{3}\).9
=\(\dfrac{6}{7}\)-\(\dfrac{10}{9}\)-15
=\(\dfrac{54}{63}\)-\(\dfrac{70}{63}\)-\(\dfrac{945}{63}\)
=\(\dfrac{-961}{63}\)=\(-15\dfrac{16}{63}\)
d,(20+\(9\dfrac{1}{4}\)):\(2\dfrac{1}{4}\)
=(20+\(\dfrac{37}{4}\)):\(\dfrac{9}{4}\)
=20:\(\dfrac{9}{4}\)+\(\dfrac{37}{4}\):\(\dfrac{9}{4}\)
=20.\(\dfrac{4}{9}\)+\(\dfrac{37}{4}\).\(\dfrac{4}{9}\)
=\(\dfrac{80}{9}\)+\(\dfrac{37}{9}\)
=\(\dfrac{117}{9}\)
Mình làm nhiều như thế thì sẽ không tránh được lỗi sai nên mình mong bạn hãy xem lại thật kĩ nhé!