K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

1)C= 1/5+1/10+1/20+1/40+...+1/1280

\(=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)

Đặt cái trong ngoặc là A ta có:\(2A=2+1+...+\frac{1}{2^7}\)

\(2A-A=\left(2+1+...+\frac{1}{2^7}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)

\(A=2-\frac{1}{2^8}\).Thay A vào ta được:\(C=\frac{1}{5}\left(2-\frac{1}{2^8}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)

2)D= 2/1*3+2/3*5+2/5*10+2/7*9+2/9*11+2/11*18+2/13*15

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)

3)E= 4/3*7+4/7*11+4/11*15+4/15*19+4/19*23+4/23*27

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}\)

\(=\frac{8}{27}\)

4)G= 1/2+1/6+1/12+1/20+1/30+1/42+...+1/110

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

5)H= 3/1*2+3/2*3+3/3*4+3/4*5+...+3/9*10

\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=3\left(1-\frac{1}{10}\right)\)

\(=3\times\frac{9}{10}\)

\(=\frac{27}{10}\).Lần sau bạn đăng ít một thôi nhé 

Giải:

a) \(2\dfrac{17}{20}-1\dfrac{15}{11}+6\dfrac{9}{20}:3\)

\(=\dfrac{57}{20}-\dfrac{26}{11}+\dfrac{129}{20}:3\) 

\(=\dfrac{107}{220}+\dfrac{43}{20}\)

\(=\dfrac{29}{11}\)

b) \(4\dfrac{3}{7}:\left(\dfrac{7}{5}.4\dfrac{3}{7}\right)\) 

\(=\dfrac{31}{7}:\left(\dfrac{7}{5}.\dfrac{31}{7}\right)\) 

\(=\dfrac{31}{7}:\dfrac{31}{5}\) 

\(=\dfrac{5}{7}\) 

c) \(\left(3\dfrac{2}{9}.\dfrac{15}{23}.1\dfrac{7}{29}\right):\dfrac{5}{23}\) 

\(=\left(\dfrac{29}{9}.\dfrac{15}{23}.\dfrac{36}{29}\right):\dfrac{5}{23}\) 

\(=\dfrac{60}{23}:\dfrac{5}{23}\) 

\(=12\)

Bài 1

a: 11/12=1-1/12

23/24=1-1/24

mà -1/12>-1/24

nên 11/12>23/24

b: -3/20=-9/60

-7/12=-35/60

mà -9>-35

nên -3/20>-7/12

12 tháng 8 2018

a) \(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)

      \(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)

       \(=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)

b) Ta có : A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)

                  \(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

                   \(=3.\left(1-\frac{1}{100}\right)\)

                     \(=3.\frac{99}{100}=\frac{297}{100}\)

29 tháng 1 2023

loading...  

29 tháng 1 2023

\(-\left(\dfrac{23}{55}+\dfrac{17}{20}\right)+\left(\dfrac{7}{20}-\dfrac{2}{11}\right)-\dfrac{1}{-2}\\ =\dfrac{-279}{220}+\dfrac{37}{220}+\dfrac{1}{2}\\ =\dfrac{-11}{10}+\dfrac{1}{2}\\ =\dfrac{-3}{5}\)

15 tháng 4 2018

a, \(\dfrac{5}{1.3}\)+\(\dfrac{5}{3.5}\)+\(\dfrac{5}{5.7}\)+...+\(\dfrac{5}{99.101}\)

= 5.\(\dfrac{1}{1.3}\)+5.\(\dfrac{1}{3.5}\)+5.\(\dfrac{1}{5.7}\)+...+5.\(\dfrac{1}{99.101}\)

=5.(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{99.101}\))

=5.(\(\dfrac{2}{2}\).\(\dfrac{1}{1.3}\)+\(\dfrac{2}{2}\).\(\dfrac{1}{3.5}\)+\(\dfrac{2}{2}\).\(\dfrac{1}{5.7}\)+...+\(\dfrac{2}{2}\).\(\dfrac{1}{99.101}\))

=\(\dfrac{5}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{99.101}\))

=\(\dfrac{5}{2}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{99}\)-\(\dfrac{1}{101}\))

=\(\dfrac{5}{2}\).(\(\dfrac{1}{1}\)-\(\dfrac{1}{101}\))

=\(\dfrac{5}{2}\).\(\dfrac{100}{101}\)

=\(\dfrac{250}{101}\)

=\(2\dfrac{48}{101}\)

b,\(\dfrac{-11}{23}\).\(\dfrac{6}{7}\)+\(\dfrac{8}{7}\).\(\dfrac{-11}{23}\)-\(\dfrac{1}{23}\)

=\(\dfrac{-11}{23}\).(\(\dfrac{6}{7}\)+\(\dfrac{8}{7}\))-\(\dfrac{1}{23}\)

=\(\dfrac{-11}{23}\).2-\(\dfrac{1}{23}\)

=\(\dfrac{-22}{23}\)-\(\dfrac{1}{23}\)

=-1

c,\(\dfrac{2.3}{7}\)+(\(\dfrac{2}{9}\)-\(1\dfrac{1}{3}\))-\(\dfrac{5}{3}\):\(\dfrac{1}{9}\)

=\(\dfrac{6}{7}\)+(\(\dfrac{2}{9}\)-\(\dfrac{4}{3}\))-\(\dfrac{5}{3}\).9

=\(\dfrac{6}{7}\)-\(\dfrac{10}{9}\)-\(\dfrac{5}{3}\).9

=\(\dfrac{6}{7}\)-\(\dfrac{10}{9}\)-15

=\(\dfrac{54}{63}\)-\(\dfrac{70}{63}\)-\(\dfrac{945}{63}\)

=\(\dfrac{-961}{63}\)=\(-15\dfrac{16}{63}\)

d,(20+\(9\dfrac{1}{4}\)):\(2\dfrac{1}{4}\)

=(20+\(\dfrac{37}{4}\)):\(\dfrac{9}{4}\)

=20:\(\dfrac{9}{4}\)+\(\dfrac{37}{4}\):\(\dfrac{9}{4}\)

=20.\(\dfrac{4}{9}\)+\(\dfrac{37}{4}\).\(\dfrac{4}{9}\)

=\(\dfrac{80}{9}\)+\(\dfrac{37}{9}\)

=\(\dfrac{117}{9}\)

Mình làm nhiều như thế thì sẽ không tránh được lỗi sai nên mình mong bạn hãy xem lại thật kĩ nhé!