Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = x^2 - y^2 - x - y
= ( x- y)(x + y) - ( x+ y)
= ( x+ y)( x- y - 1 )
3:
a: =>x=0 hoặc x+5=0
=>x=0 hoặc x=-5
b: =>x^2=4
=>x=2 hoặc x=-2
c: =>(x-5)(2x+1+x+6)=0
=>(x-5)(3x+7)=0
=>x=5 hoặc x=-7/3
1.
a. 2x - 6 > 0
\(\Leftrightarrow\) 2x > 6
\(\Leftrightarrow\) x > 3
S = \(\left\{x\uparrow x>3\right\}\)
b. -3x + 9 > 0
\(\Leftrightarrow\) - 3x > - 9
\(\Leftrightarrow\) x < 3
S = \(\left\{x\uparrow x< 3\right\}\)
c. 3(x - 1) + 5 > (x - 1) + 3
\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3
\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0
\(\Leftrightarrow\) 2x > 0
\(\Leftrightarrow\) x > 0
S = \(\left\{x\uparrow x>0\right\}\)
d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)
\(\Leftrightarrow2x-3>x\)
\(\Leftrightarrow2x-3-x>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
\(S=\left\{x\uparrow x>3\right\}\)
2.
a.
Ta có: a > b
3a > 3b (nhân cả 2 vế cho 3)
3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)
b. Ta có: a > b
a > b (nhân cả 2 vế cho 1)
a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)
Ta có; 3 > 1
b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)
Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1
c.
5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)
5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )
a > b
3.
a. 2x(x + 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(S=\left\{0,-5\right\}\)
b. x2 - 4 = 0
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(S=\left\{0,4\right\}\)
d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0
\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)
\(S=\left\{5,\dfrac{-7}{3}\right\}\)
1) =\(x^7-x+x^2+x\)+1
=\(x\left(x^6-1\right)+\left(x^2+x+1\right)\)
=\(x\left(x^3-1\right)\left(x^3+1\right)\)\(+\left(x^2+x+1\right)\)
=x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=[(x^4+x)(x-1)+1](x^2+x+1)
=(x^5-x^4+x^2-x)(x^2+x+1)
Trả lời:
1, x7 + x2 + 1
= x7 + x2 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x7 + x6 + x5 ) - ( x6 + x5 + x4 ) + ( x4 + x3 + x2 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x5 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x2 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x5 - x4 + x2 - x + 1 )
b, x8 + x7 + 1
= x8 + x7 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x8 + x7 + x6 ) - ( x6 + x5 + x4 ) + ( x5 + x4 + x3 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x6 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x3 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Bài 1
1.(x-3)(x+2)-x(x-7)=15
\(\Leftrightarrow x^2+2x-3x-6-x^2+7x=15\)
\(\Leftrightarrow-6+6x=15\)
\(\Leftrightarrow6x=15+6\) =21
\(\Rightarrow x=\dfrac{21}{6}=3,5\)
2.(x-5)(x+5)+x(3-x)=20
\(\Leftrightarrow x^2-25+3x-x^2=20\)
\(\Leftrightarrow-25+3x=20\)
\(\Leftrightarrow3x=20+25=45\)
\(\Rightarrow x=\dfrac{45}{3}=15\)
3.(x-7)2-x(2+x)=-7
\(\Leftrightarrow x^2-14x+49-2x-x^2=-7\)
\(\Leftrightarrow-16x+49=-7\)
\(\Leftrightarrow-16x=-7-49=-56\)
\(\Rightarrow x=\dfrac{-56}{-16}=\dfrac{7}{2}=3,5\)
Tiếp bài 1
4.(x-4)2-(x+4)(x-4)=-16
\(\Leftrightarrow x^2-8x+16-x^2-16=-16\)
\(\Leftrightarrow-8x=-16\)
\(\Rightarrow x=\dfrac{-16}{-8}=2\)
5.(x-5)(x+5)-x(2-3x)=4x2-7
\(\Leftrightarrow x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-4x^2-2x=-7+25\)
\(\Leftrightarrow-2x=18\)
\(\Rightarrow x=\dfrac{18}{-2}=-9\)
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
a: Ta có: \(\left(x+2\right)^2+\left(2x-1\right)^2-\left(x-3\right)^2=36\)
\(\Leftrightarrow x^2+4x+4+4x^2-4x+1-x^2+6x-9=36\)
\(\Leftrightarrow4x^2+6x-4-36=0\)
\(\Leftrightarrow4x^2+6x-40=0\)
\(\text{Δ}=6^2-4\cdot4\cdot\left(-40\right)=676\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-6-26}{8}=-4\\x_2=\dfrac{-6+26}{8}=\dfrac{5}{2}\end{matrix}\right.\)
1) \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
2) \(x^2-2x=24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2+4x-6x-24=0\)
\(\Leftrightarrow x\left(x+4\right)-6\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)