Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét k = 100 ta dễ dàng tìm được một tập hợp n số trong đó không số nào là bội của số kia
\(\left\{101;102;...;200\right\}\)
Ta chứng minh với k = 101 thì bài toán đúng.
Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_2;...;a_{101}\right\}\)
Ta biểu diễn chúng thành dạng:
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)
với \(x_1;x_2;...;x_{101}\)là các số tự nhiên và \(b_1;b_2;...;b_{101}\)là các số lẻ.
Ta thấy từ 1 đến 199 có 100 số lẻ vì vậy trong 101 số đã cho tồn tại 2 số m > n sao cho bm = bn.Hai số này là bội của nhau.
Vậy giá trị nhỏ nhất của k là 101
Nguồn: Câu hỏi của Đỗ Hoàng Phương - Toán lớp 7 | Học trực tuyến
Tổng của 5 số nguyên dương liên tiếp có dạng: \(\frac{\left(a+a+4\right)\cdot5}{2}=5\left(a+2\right)⋮5\)
(a và a+4 là số đầu và số cuối khi xếp từ bé đến lớn)
Làm tương tự với tổng của 7 số và 9 số
Suy ra số cần tìm chia hết cho 5,7,9
Mà BCNN(5,7,9)=315 nên số cần tìm là 315
2/ ta có: BCNN(a;b).UCLN(a;b) = ab
=> a.b = 420.21 = 8820
ta có: ab= 8820
a+21=b hay b-a = 21
hay số cách nhau 21 mà tích là 8820 chỉ có 84.115
vậy a= 84
b= 115
duyệt đi
Bài 1:
60= 22.3.5 ; 88 = 23.11
ƯCLN(60;88)= 22 = 4
ƯC(60;88)=Ư(4)={1;2;4}
Bài 2:
24= 23.3 ; 30=2.3.5 ; 40 = 23.5
BCNN(24;30;40)=23.3.5= 120
BC(24;30;40)=B(120)={0;120;240;360;...}
Đặt \(A=2^{2023}+23n=8.2^{2020}+23n=8.\left(2^5\right)^{404}+23n=8.32^{404}+23n\)
Do \(32\equiv1\left(mod31\right)\Rightarrow32^{404}\equiv1\left(mod31\right)\)
\(\Rightarrow8.32^{404}\equiv8\left(mod31\right)\)
\(\Rightarrow A\) chia hết cho 31 khi và chỉ khi \(23n+8\) chia hết 31
\(\Rightarrow n=1\) là giá trị nhỏ nhất thỏa mãn
Gọi tập hợp A là bội của 28; tập hợp B là ước của 420
Ta có:
\(A=\left\{0;28;56;84;112;140;168;....;420;448;....\right\}\)
\(B=\left\{1;2;3;4;5;6;7;10;12;14;15;20;21;30;28;30;35;42;60;70;105;140;110;420\right\}\)
\(\Rightarrow A\cap B=\left\{28;140;420\right\}\)
Vậy.............
Chúc bạn học tốt!!!