K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Để mai mk lm giờ pùn ngủ quá ^ ^

10 tháng 8 2017

humlimdimlimdimlimdimlimdim

Bài 1: Cho \(\widehat{xoy}\).Tia Oz là tia phân giác của \(\widehat{xoy}\).Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz a)Cho biết \(\widehat{xoy}\) = 100 độ.Tính \(\widehat{tOh}\) ? b) Cho biết \(\widehat{tOh}\)=40 độ. Tính \(\widehat{xOy}\) ? c)Tính giá trị lớn nhất của \(\widehat{xOy}+\widehat{tOh}\)? d) Cho biết \(\widehat{xOy}+\widehat{tOh}\)=210 độ.Tính \(\widehat{xoy};\widehat{tOh}\) ? Bài 2: Cho năm tia chung gốc...
Đọc tiếp

Bài 1: Cho \(\widehat{xoy}\).Tia Oz là tia phân giác của \(\widehat{xoy}\).Gọi Ot là tia đối của tia Ox, Oh là tia đối của tia Oz

a)Cho biết \(\widehat{xoy}\) = 100 độ.Tính \(\widehat{tOh}\) ?

b) Cho biết \(\widehat{tOh}\)=40 độ. Tính \(\widehat{xOy}\) ?

c)Tính giá trị lớn nhất của \(\widehat{xOy}+\widehat{tOh}\)?

d) Cho biết \(\widehat{xOy}+\widehat{tOh}\)=210 độ.Tính \(\widehat{xoy};\widehat{tOh}\) ?

Bài 2: Cho năm tia chung gốc tại O;theo thứ tự OA;OB;OC;OD;OE tạo thành bốn gốc kề bù có số đo: \(\widehat{AOB}\) =30 độ; \(\widehat{BOC}\)= 70 độ; \(\widehat{COD}\) = 80 độ; \(\widehat{DOE}\) =30 độ.

1. Chứng tỏ hai \(\widehat{AOB}\)\(\widehat{DOE}\) là hai góc đối đỉnh?

2. Tính \(\widehat{EOA}\)?

Bài 3: Cho hai đường thẳng x'x và y'y cắt nhau tại điểm O.Một điểm A nằm trên tia phân giác của \(\widehat{x'Oy'}\)và một điểm B nằm trong \(\widehat{xOy}\). Biết rằng \(\widehat{yOx'}\)=120 độ; \(\widehat{BOy'}\)=150 độ.

1) Chứng tỏ rằng ba điểm A,O,B thẳng hàng

2) Kể tên và số đo của các cặp góc đối đỉnh có trên hình vẽ (không kể góc bẹt)

Mọi người ơi ,giúp tớ với! Sáng mai tớ phải đi học rồi!HUhu!bucminhgianroioho

Ai giúp được tớ thì tớ xin trân thành cảm ơn trước và mong các bạn sớm có cách làm cả ba bài bạn nhé! ngaingunghihiokvui

Tớ sẽ ticks cho các cậu nếu người nào có kết quả sớm nhất nha!thanghoabanhquangaingungoaoahehe


1
28 tháng 6 2017

bài 1 : a) oh là tia đối oz \(\Rightarrow\) zoh thẳng hàng

ot là tia đối của tia ox \(\Rightarrow\) xot thẳng hàng

ta có : xoz = \(\dfrac{100}{2}=50^0\) (oz là tia phân giác của góc xoy)

mà xoz = toh (đối đỉnh) \(\Rightarrow\) toh = 500

b) ta có : toh = xoz (đối đỉnh)

mà toh = 400 \(\Rightarrow\) xoz = 400

\(\Rightarrow\) xoy = 40.2 = 800

28 tháng 6 2017

bạn ơi tớ bảo phần ab bài 1 tớ biết làm rồi tớ muốn cậu có thể giúp tớ bài 2 và bài 3,bài 1 c,d được không

xin cảm ơn các bạn trước!

24 tháng 3 2017

Xét 2 t.h là ra mà bn : a âm - b dương

a dương -b âm ( loại vì thế k thỏa mãn bài )

26 tháng 3 2017

minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểmkhocroi

13 tháng 6 2017

\(b\ne d;b+d\ne0\) nên áp dụng tính chất cảu dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Vậy \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\) (đpcm)

Chúc bạn học tốt!!!

13 tháng 6 2017

Ta có:Nếu

\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

thì \((a+c)(b-d)=(a-c)(b+d)\)

\(a(b-d)+c(b-d)=a(b+d)-c(b+d)\)

\(ab-ad+bc-cd=ab+ad-bc+cd\)

\(=\)\(ab-ab\)\(-ad+ad\)\(+bc-bc\)\(-cd+cd\)

\(=0\)

\(\Leftrightarrow\left(a+c\right)\left(b-d\right)\)\(=\left(a-c\right)\left(b+d\right)\)

\(\Leftrightarrow\dfrac{a+c}{b+d}\)\(=\dfrac{a-c}{b-d}\)

20 tháng 4 2017

Ta có : ˆA1A1^ˆA2A2^ là hai góc kề bù nên:

ˆA1+ˆA2=1800⇒ˆA2=1800−ˆA1=1800−1500=300A1^+A2^=1800⇒A2^=1800−A1^=1800−1500=300

Vì d1 // d2ˆA2A2^ so le trong với ˆB1B1^

⇒ˆB1=ˆA2=300⇒B1^=A2^=300

Vậy ˆB1=300



18 tháng 9 2017

Gọi B giao điểm của a và d2.

d1 // d2 nên góc nhọn tại B bằng góc nhọn tại A và bằng

1800 - 1500= 300.

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

23 tháng 12 2016

tính biểu thức A đầu tiien cậu tìm số số hạng nhé : 240-20/1=220 (cậu hiểu 1 là khoảng cách giữa 2 số liền nhau trong dãy) rồi cậu tính (240+20).220/2= thui cậu tự bấm máy nhé mẹ mình cùm mt của mình đi dạy rùi nhớ like nhé bạn tên đẹpyeu

23 tháng 12 2016

cảm ơnnnnnnnnnnnnnnnnnnnn nhìu đúng là tên đẹp có khác like cái nữa đithanghoa

23 tháng 12 2016

Ta có:
\(A=2^0+2^1+2^2+...+2^{40}\)

\(\Rightarrow A=1+2+2^2+...+2^{40}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{41}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{41}\right)-\left(1+2+2^2+...+2^{40}\right)\)

\(\Rightarrow A=2^{41}-1\)

\(2^{41}-1< 2^{41}\) nên A < B

Vậy A < B

27 tháng 10 2017

\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)

27 tháng 10 2017

a. x2113=31

=> x2=144

=> x2=\(\sqrt{144}\)

=> x=\(\pm12\)

c.x4=256

=> x4=44

=> x=\(\pm4\)

27 tháng 7 2017

pn ơi hình như đề sai a+5/a-5 va b+6/b-6

27 tháng 7 2017

ta có : a+5/a-5=b+6/b-6
=> a+5/b+6=a-5/b-6
áp dụng dãy tỉ số bằng nhau ta được:
a+5/b+6=a-5/b-6 =(a+5+a-5)/(b+6+b-6)=(a+5-a+5)/(b+6-b+6)
=> 2a/2b = 10/12
=> a/b = 5/6