Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi A là tập hợp tất cả cách sắp xếp, là tập hợp các cách xếp mà chữ cái T đứng cạnh nhau, là tập hợp các cách xếp mà chữ cái D đứng cạnh nhau.
Ta có số phần tử của tập hợp A là (do 2 chữ T như nhau, 2 chữ C như nhau
nên khi hoán vị vẫn tính là 1).
Số phân tử của tập hợp lần lượt là (ta coi 2 chữ T đứng cạnh nhau là 1 chữ, 2 chữ C đứng cạnh nhau là 1 chữ).
Số cách sắp xếp mà vừa có T đứng cạnh nhau, c đứng cạnh nhau là
Vậy số cách sắp xếp cần tính là
.
Số cách chọn 2 nam đứng ở đầu và cuối là .
Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là .
Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:
Chọn D.
n(Ω)=6!
A:" Xếp thành 1 dãy hàng ngang sao cho 2 bạn học sinh nam đứng cạnh nhau"⇒ \(\overline{A}\):" 2 bạn học sinh nam ko đứng cạnh nhau".
Ghép 2 bạn học sinh nam thành 1 nhóm⇒ coi còn 5 người⇒ n(A)=2*5!( do hoán vị 2 bạn nam, và xếp 5 người)⇒ n(\(\overline{A}\))=6!-2*5!=4*5!