Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Kẻ \(DK\perp BH.\)
Mà \(BH\perp AC\left(gt\right)\)
=> \(DK\) // \(AC\) (từ vuông góc đến song song).
Hay \(DK\) // \(HC.\)
=> \(\widehat{KDB}=\widehat{HCD}\) (vì 2 góc đồng vị).
+ Vì \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
=> \(\widehat{FBD}=\widehat{HCD}.\)
Mà \(\widehat{KDB}=\widehat{HCD}\left(cmt\right)\)
=> \(\widehat{FBD}=\widehat{KDB}.\)
Xét 2 \(\Delta\) vuông \(BFD\) và \(DKB\) có:
\(\widehat{BFD}=\widehat{DKB}=90^0\)
Cạnh BD chung
\(\widehat{FBD}=\widehat{KDB}\left(cmt\right)\)
=> \(\Delta BFD=\Delta DKB\) (cạnh huyền - góc nhọn).
=> \(DF=BK\) (2 cạnh tương ứng) (1).
Nối D với H.
+ Vì \(DK\) // \(AC\left(cmt\right)\)
=> \(DK\) // \(EH.\)
=> \(\widehat{KDH}=\widehat{EHD}\) (vì 2 góc so le trong).
Xét 2 \(\Delta\) vuông \(DEH\) và \(HKD\) có:
\(\widehat{DEH}=\widehat{HKD}=90^0\)
Cạnh DH chung
\(\widehat{EHD}=\widehat{KDH}\left(cmt\right)\)
=> \(\Delta DEH=\Delta HKD\) (cạnh huyền - góc nhọn).
=> \(DE=HK\) (2 cạnh tương ứng) (2).
Từ (1) và (2) => \(DF+DE=BK+HK.\)
Mà \(BK+HK=BH\)
=> \(DF+DE=BH\left(đpcm\right).\)
Chúc bạn học tốt!
cảm ơn vì câu trả lời của bạn bạn có thể giúp mình câu hỏi dưới đây ko ạ cảm ơn bạn rất nhiều
bạn có thể giúp mình nhữngcâu sau được ko ạ????cảm ơn bạn rất nhiều
1) Cho \(\Delta\)ABC có AB = AC . Lấy điểm D trên cạnh AB , Điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh : BE = CD
b) Gọi O là giao điểm của BE và CD . Chứng minh rằng \(\Delta\) BOD = \(\Delta\)COE
2) Cho \(\Delta\)ABC vuông tại A. Tia phân giác của góc B cắt AC ở D . Kẻ DE vuông góc với BC . C/m rằng AB = BE
A B C E D M H
a) Xét \(\Delta ADB\)và \(\Delta AEC\), có :
góc A chung
góc AEC = góc ADB = 90o
AB = AC (\(\Delta ABC\) cân tại A)
=> \(\Delta ADB=\Delta AEC\left(ch-gn\right)\)
b) Nối A với H
Xét \(\Delta AEH\) và \(\Delta ADH\) , có :
AH chung
góc AEH = góc ADH = 900
AC = AD ( \(\Delta ADB=\Delta AEC\) )
=> \(\Delta AEH=\Delta ADH\left(ch-cgv\right)\)
=> HE = HD ( 2 cạnh t/ứ)
c) Ta có : H là giao của 2 đường cao BD và CE trong \(\Delta ABC\)
=> H là trực tâm của \(\Delta ABC\)
Ta lại có : \(AM\perp BC\)
=> AM là đường cao thứ ba của \(\Delta ABC\)
=> AM đi qua H ( trực tâm )
d) Ta có : \(\Delta ADB=\Delta AEC\) (cmt)
=> BD = CE ; AE = AD
Áp dụng định lí Py-ta-go , ta có :
AB2= AD2 + BD2 = AE2 + EC2 ( vì BD = EC ; AE = AD )
AC2 = EA2 + EC2
BC2 = EC2 + BE2
Cộng vế với vế của ba đẳng thức trên , ta được :
AB2 + AC2 + BC2 = 3EC2 + 2EA2 + EB2 => đpcm
A B C O D E
a) Ta có: AD + DB = AB
AE + EC = AC
mà AB = AC; AD = AE => DB = EC
Vì AB = AC nên \(\Delta\)ABC cân tại A
=> \(\widehat{ABC}\) = \(\widehat{ACB}\) (góc đáy)
hay \(\widehat{DBC}\) = \(\widehat{ECB}\)
Xét \(\Delta\)DCB và \(\Delta\)EBC có:
DB = EC (c/m trên)
\(\widehat{DBC}\) = \(\widehat{ECB}\) (c/m trên)
BC chung
=> \(\Delta\)DCB = \(\Delta\)EBC (c.g.c)
=> DC = EB (2 cạnh tương ứng)
b) Do \(\Delta\)DCB = \(\Delta\)EBC (câu a)
=> \(\widehat{BDC}\) = \(\widehat{CEB}\) (2 góc t/ư)
hay \(\widehat{BDO}\) = \(\widehat{CEO}\)
Xét \(\Delta\)ABE và \(\Delta\)ACD có:
AE = AD (gt)
\(\widehat{A}\) chug
AB = AC (gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)
=> \(\widehat{ABE}\) = \(\widehat{ACD}\) (2 góc t/ư)
hay \(\widehat{DBO}\) = \(\widehat{ECO}\)
Xét \(\Delta\)BOD và \(\Delta\)COE có:
\(\widehat{DBO}\) = \(\widehat{ECO}\) (c/m trên)
BD = CE (c/m trên)
\(\widehat{BDO}\) = \(\widehat{CEO}\) (c/m trên)
=> \(\Delta\)BOD = \(\Delta\)COE (g.c.g)
D E A B C O 1 2 1 2 1 1
a, xét \(\Delta\) ABE và \(\Delta\) ACD có
\(\widehat{A}\) góc chung
AE = AD (gt)
AB = AC (gt)
=> \(\Delta\) ABE = \(\Delta\) ACD (cgc) => BE = CD
b, ta có \(\widehat{D1}\) + \(\widehat{D2}\) = 180o ( kề bù )
\(\widehat{E1}\) + \(\widehat{E2}\) = 180o ( kề bù )
mà \(\widehat{D1}\) = \(\widehat{E1}\) ( \(\Delta\) ABE = \(\Delta\) ACD )
=> \(\widehat{D2}\) = \(\widehat{E2}\)
ta có AD + DB = AB
AE + EC = AC
mà AB = AC, AD = AE => DB = EC
xét Δ BOD và Δ COE có
\(\widehat{D2}\) = \(\widehat{E2}\)
a.Cho ABC cân tại C => CA=CB
Xét ΔCHA và ΔCHB có:
CA=CB
CH chung
góc CHA=CHA=90 độ
=> ΔCHA=ΔCHB ( cạnh huyền-cạnh góc vuông)
b. ΔCHA=ΔCHB => BH=HA
mà BH+HA=BA=8
=> BH=HA=4
Xét tam giác BHC vuông tại H,ta có:
\(CH^2=BC^2-BH^2\)
=> \(CH^2=5^2-4^2\)
=> \(CH^2=9\)
=> CH=3
Hình : TỰ VẼ .
Bài làm :
Giả thiết , kết luận tự làm nhé.
a. Xét \(\Delta CHA\) và \(\Delta CHB\) , ta có :
CH cạnh chung
H = 90° (CH \(\perp\) AB)
CA = CB (gt)
=> \(\Delta CHA\) = \(\Delta CHB\) (cạnh huyền - cạnh góc vuông)
....Còn nhiều cách bài này nhưng sợ cách này không biết . Bạn có thể xem sách tập 2 để hiểu hơn về cách này nhé.
=> AH = BH (2 cạnh tương ứng)
=> AH = BH = \(\dfrac{AB}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b. Trong \(\Delta\) CHB , có :
H = 90°
=> \(CH^2\) = \(BC^2-HB^2=5^2-4^2=9\)
=> \(CH^2=\sqrt{9}=3\) (Vì CH >0)
c.