Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{A}{B}=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-2}{x^2+1}=3x^2+x-3+\dfrac{5x-2}{x^2+1}\)
Để A chia hết cho B thì \(\left(5x-2\right)\left(5x+2\right)⋮x^2+1\)
\(\Leftrightarrow25x^2-4⋮x^2+1\)
\(\Leftrightarrow25x^2+25-29⋮x^2+1\)
\(\Leftrightarrow x^2+1\in\left\{1;29\right\}\)
hay \(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
=a, a(b2+c2)+b(a2+c2)+c(a2+b2)+2abc
= ab2+ac2+ba2+bc2+ca2+cb2+2abc
= c2(a+b)+ab(a+b)+c(a2+b2+2ab)
= c2(a+b)+ab(a+b)+c(a+b)2
= (a+b)\(\left[c^2+ab+c\left(a+b\right)\right]\)
= (a+b)(c2+ab+ca+cb)
= (a+b)\(\left[c\left(a+c\right)+b\left(a+c\right)\right]\)
=(a+b)(a+c)(b+c)
b, a(b-c)3+b(c-a)3+c(a-b)3
= a(b-c)3-b\(\left[\left(b-c\right)+\left(a-b\right)\right]\)3+c(a-b)3
= a(b-c)3-b(b-c)3-3b(b-c)2(a-b)-3b(b-c)(a-b)2-b(a-b)3+c(a-b)3
= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(b-c+a-b)-b(a-b)3+c(a-b)3
= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(a-c)-b(a-b)3+c(a-b)3
= (b-c)3(a-b)-3b(b-c)(a-b)(a-c)-(a-b)3(b-c)
= (b-c)(a-b)\(\left[\left(b-c\right)^2-3b\left(a-c\right)-\left(a-b\right)^2\right]\)
=(b-c)(a-b)(b2-2bc+c2-3ab+3bc-a2+2ab-b2)
= (b-c)(a-b)(c2-a2+bc-ab)
= (b-c)(a-b)\(\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)
= (b-c)(a-b)(c-a)(c+a+b)
c, a2b2(a-b)+b2c2(b-c)+c2a2(c-a)
= a2b2(a-b)-b2c2\(\left[\left(a-b\right)+\left(c-a\right)\right]\)+c2a2(c-a)
= a2b2(a-b)-b2c2(a-b)-b2c2(c-a)+c2a2(c-a)
= b2(a-b)(a2-c2)+c2(c-a)(a2-b2)
= b2(a-b)(a-c)(a+c)-c2(a-c)(a-b)(a+b)
= (a-c)(a-b)\(\left[b^2\left(a+c\right)-c^2\left(a+b\right)\right]\)
= (a-c)(a-b)(b2a+b2c-c2a-c2b)
= (a-c)(a-b)\(\left[a\left(b^2-c^2\right)+bc\left(b-c\right)\right]\)
= (a-c)(a-b)\(\left[a\left(b-c\right)\left(b+c\right)+bc\left(b-c\right)\right]\)
= (a-c)(a-b)(b-c)\(\left[a\left(b+c\right)+bc\right]\)
= (a-c)(a-b)(b-c)(ab+ac+bc)
d, a4(b-c)+b4(c-a)+c4(a-b)
= a4(b-c)-b4[(b-c)+(a-b)]+c4(a-b)
= (b-c)(a4-b4)+(a-b)(c4-b4)
= (b-c)(a2-b2)(a2+b2)+(a-b)(c2-b2)(c2+b2)
= (b-c)(a-b)(a+b)(a^2+b^2)-(a-b)(b-c)(b+c)(b2+c2)
= (b-c)(a-b)(a3+ab2+ba2+b3-bc2-b3-cb2-c3)
= (b-c)(a-b)(a3+ab2+ba2-bc2-c3-cb2)
= (b-c)(a-b)(a3-c3)+b2(a-c)+b(a2-c2)
= (b-c)(a-b)(a-c)(a2+ac+c2)+b2(a-c)+b(a-c)(a+c)
= (b-c)(a-b)(a-c)(a2+ac+c2+b2+ab+ac)
= (a-b)(b-c)(c-a)(a2+b2+c2+ab+bc+ca)
bài 1
a(x+y)2-(x-y)2
=[(x+y)-(x-y)][(x+y)+(x-y)]
=(x+y-x+y)(x+y+x-y)
=2y.2x
b,(3x+1)2-(x+1)2
=[(3x+1)-(x+1)][(3x+1)+(x+1)]
=(3x+1-x-1)(3x+1+x+1)
=2x.(4x+2)
4x.(x+10
bài 2
x3-0,25x=0
=>x(x2-0,25)=0
=>x=0 hoặc x2-0,25=0
=> x=0 hoặc x=\(\pm0,5\)
B1:a)(3x-5)2-(3x+1)2=8
[(3x-5)+(3x+1)].[(3x-5)-(3x+1)]=8
(3x-5+3x+1)(3x-5-3x-1)=8
9x2-15x-9x2-3x-15x+25+15x+5+9x2-15x-9x2-3x+3x-5-3x-1=8
-36x+24=8
-36x=8-24=16
x=16:(-36)=\(\dfrac{-4}{9}\)
Bài 5:
a: \(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)
b: \(=\left(2xy^2-3xy^2+1\right)\left(2xy^2+3xy^2-1\right)\)
\(=\left(1-xy^2\right)\left(5xy^2-1\right)\)
Bài 6:
a: \(\left(a+b+c-d\right)\left(a+b-c+d\right)\)
\(=\left(a+b\right)^2+\left(c-d\right)^2\)
\(=a^2+2ab+b^2+c^2-2cd+d^2\)
b: \(\left(a+b-c-d\right)\left(a-b+c-d\right)\)
\(=\left(a-d\right)^2-\left(b-c\right)^2\)
\(=a^2-2ad+d^2-b^2+2bc-c^2\)
a) 2x2 + 4x + xy + 2y
= (2x2 + xy) + (4x + 2y)
= x(2x + y) + 2(2x + y)
= (x + 2)(2x + y)
b) x2 + xy - 7x - 7y
= x(x + y) - 7(x + y)
= (x - y)(x + y)
\(7,\\ a,A=x^2-4x+3+11=\left(x-2\right)^2+10\ge10\\ \text{Dấu }"="\Leftrightarrow x=2\\ b,B=-\left(4x^2-4x+1\right)+6=-\left(2x-1\right)^2+6\le6\\ \text{Dấu }"="\Leftrightarrow x=\dfrac{1}{2}\\ c,x-y=2\Leftrightarrow x=y+2\\ \Leftrightarrow B=y^2-3x^2=y^2-3\left(y+2\right)^2\\ \Leftrightarrow B=y^2-3y^2-12y-12=-4y^2-12y-12\\ \Leftrightarrow B=-\left(4y^2+12y+9\right)-3=-\left(2y+3\right)^2-3\le-3\\ \text{Dấu }"="\Leftrightarrow y=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(8,\\ \Leftrightarrow x^3-3x^2+5x+a=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow8-12+10+a=0\Leftrightarrow a=-6\)
mình thấy chưa triệt để