Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để \(\overline{13xy}⋮2;5\Rightarrow y=0\)
để\(\overline{13x0}⋮3;9\)
thì 1+3+x+0\(⋮9\)
=> \(3+x⋮9\)
=> x=6
vậy số cần tìm là 1360
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
Ta có
\(a=12k+9\) (k là số nguyên dương)
\(\Rightarrow a=3\left(4k+3\right)⋮3\)
Ta có
\(a=12k+8+1=4\left(3k+2\right)+1\) => a:4 dư 1 nên a không chia hết cho 4
Do a chia 12 dư 9 nên a = 12k + 9 \(\left(k\in N\right)\)
Ta có:
\(12k⋮3\)
\(9⋮3\)
\(\Rightarrow a=\left(12k+9\right)⋮3\)
Do \(12k⋮4\)
\(9⋮̸4\)
\(\Rightarrow a=\left(12k+9\right)⋮̸4\)
Để 6xy chia cho 5 dư 4 thì y có thể là : 4 hoặc 9 .
Vì 6xy là số lẻ nên y = 9 .
Ta có : Để 6x9 chia hết cho 9 thì : ( 6 + x + 9 ) chia hết cho 9 hay 15 + x chia hết cho 9 .
Vậy x = 3 .
Vậy số đó là : 639
chia cho 5 dư 3 => y thuộc {4;9} mà 6xy là số lẻ nên y =9
thay y=9 ta có 6xy=6x9
6x9 chia hết cho 9 <=> 6+x+9 chia hết cho 9
=>15+x chia hết cho 9 => x=3
vậy số cần tìm là 639