K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

(6X+7)^2(3X+4)(X+1)=6

(36X^2+84X+49)(3X^2+7X+4)=6           -2/3

108X^4 + 252X^3 +144X^2 + 252X^3 +588X^2 +336X +147X^2+343X+196=6

108X^4 +504X^3 +879X^2 +679X + 190 =0

(X+2/3)(108X^3 + 432X^2 + 591X + 385 )=0

(X+2/3)(X+5/3)(108X^2+252X+171)=0

suy ra X=-2/3 X=-5/3

22 tháng 8 2021

\(\left(4x+1\right)\left(12x-1\right)\left(3x-2\right)\left(x+1\right)-4\) (Sửa đề)

\(=[\left(4x+1\right)\left(3x+2\right)][\left(12x-1\right)\left(x+1\right)]-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt \(12x^2+11x-1=n\)

\(=\left(n+3\right)n-4\)

\(=n^2+3n-4\)

\(=n^2-n+4n-4\)

\(=n\left(n-1\right)+4\left(n-1\right)\)

\(=\left(n-1\right)\left(n+4\right)\)

\(=\left(12x^2+11x-1-1\right)\left(12x^2+11x-1+4\right)\)

\(=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)

22 tháng 8 2021

\(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=6\)

\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)(1)

Đặt \(\left(3x^2+7x+4\right)=n\)lúc đó (1):

\(\left(12n+1\right)n=6\)

\(\Rightarrow\hept{\begin{cases}n=0,75\\n=\frac{2}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

26 tháng 10 2023

6:

a: ĐKXĐ: x<>0

\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)

b: ĐKXĐ: x<>1

\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)

\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)

c: ĐKXĐ: x<>-2

\(\dfrac{x^2+4x+4}{2x+4}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

d: ĐKXĐ: x<>-2

\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)

\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)

e: ĐKXĐ: x<>-y

\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)

g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)

7:

a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)

\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)

b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)

\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)

c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)

d:

\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)

\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)

15 tháng 4 2020

1) (x+6)(3x-1)+x+6=0

⇔(x+6)(3x-1)+(x+6)=0

⇔(x+6)(3x-1+1)=0

⇔3x(x+6)=0

2) (x+4)(5x+9)-x-4=0

⇔(x+4)(5x+9)-(x+4)=0

⇔(x+4)(5x+9-1)=0

⇔(x+4)(5x+8)=0

3)(1-x)(5x+3)÷(3x-7)(x-1)

=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)

15 tháng 2 2020

7)(16-8x)(2-6x)=0  

=> 16 - 8x = 0 hoặc 2 - 6x = 0

=> 16 = 8x hoặc 2 = 6x

=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0  

=> x + 4 = 0 hoặc 6x - 12 = 0

=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0 

=> 11 - 33x = 0 hoặc x + 11 = 0

=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0 

=> x - 1/4 = 0 hoặc x + 5/6 = 0

=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0  

=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0

=> 2x = 7/8 hoặc 3x = -1/3

=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0  

=> x(3 - 2x) = 0

=> x = 0 hoặc 3 - 2x = 0

=> x = 0 hoặc x = 3/2

15 tháng 2 2020

\(a,\left(16-8x\right)\left(2-6x\right)=0\)

\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)

\(b,\left(x+4\right)\left(6x-12\right)=0\)

\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)

\(c,\left(11-33x\right)\left(x+11\right)=0\)

\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)

\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)

\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)

\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)

\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)

\(f,3x-2x^2=0\)

\(x\left(3-2x\right)=0\)

\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

8 tháng 6 2019

Tìm x:

1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8

\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)

\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)

Vậy x = 5

2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)

\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)

\(\Leftrightarrow-4x+15=-7\)

\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)

Vậy x = \(\frac{11}{2}\)

3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6

\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)

\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)

\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)

Vậy x = -1

4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)

\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)

\(\Leftrightarrow14x=0\Leftrightarrow x=0\)

Vậy x = 0

5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)

\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)

Vậy x = \(\frac{1}{2}\)

6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27

\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)

\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)

\(\Leftrightarrow-x^3=27\)

\(\Leftrightarrow x=-3\)

Vậy x = -3

7. 3x (8x - 4) - 6x (4x - 3) = 30

\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)

\(\Leftrightarrow0=30\) ( vô lý)

Vậy pt vô nghiệm

8. 3x (5 - 2x) + 2x (3x - 5) = 20

\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)

\(\Leftrightarrow5x=20\Leftrightarrow x=4\)

Vậy x = 4