\(6x^4-5x^3-38x^2-5x+6=0\) ( Phương trình có hệ số đối xứng bậc 4)

Giải phương trìn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

X=-2,3,1/3

3 tháng 4 2017

\(6x^4-5x^3-38x^2-5x+6=0\)

\(\Leftrightarrow6x^4-12x^3+17x^3-34^2-4x^2+8x-3x+6=0\)

\(\Leftrightarrow6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-4x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x^3+18x^2-x^2-3x-x-3=0\right)\)

\(\Leftrightarrow\left(x-2\right)\left[6x^2\left(x+3\right)-x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(6x^2-3x+2x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left[6x\left(x-\frac{1}{2}\right)+2\left(x-\frac{1}{2}\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-\frac{1}{2}\right)\left(6x+2\right)=0\)

23 tháng 6 2017

Cái này t dùng máy tính

\(\left(x-2\right)\left(x+3\right)\left(2x+1\right)\left(3x-1\right)=0\)

Đến đây thì pt có 4 nghiệm:\(x=2;-3;-\frac{1}{2};\frac{1}{3}\)

Vậy....

23 tháng 6 2017

Yêu cầu giải không dùng máy tính.

28 tháng 12 2017

a, \(x^4-6x^3+11x^2-6x+1=0\)

\(\Rightarrow\left(x^2-3x+1\right)^2=0\)

\(\Rightarrow x^2-3x+1=0\)

\(\Rightarrow x=\frac{\pm\sqrt{5}+3}{2}\)

Chúc bạn học tốt

28 tháng 12 2017

\(x^4-\left(6x^2-2x^2\right)+\left(9x^2-6x+1\right)=0\)

\(x^4-2x^2\left(3x-1\right)+\left(3x-1\right)^2=0\)

\(\left(x^2-3x+1\right)^2=0\)

tự làm

B) \(\left(6x^4-18x^3\right)+\left(13x^{^3}-39x^2\right)+\left(x-3x\right)-\left(2x-6\right)=0\)

\(6x^3\left(x-3\right)+13x^2\left(x-3\right)+x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(6x^3+13x^2-2\right)=0\)

\(\left(x-3\right)\left(6x^3+12x^2+x^2+2x-x-2\right)\)

\(\left(x-3\right)\left\{6x^2\left(x+2\right)+x\left(x+2\right)-\left(x+2\right)\right\}\)

\(\left(x-3\right)\left(x+2\right)\left(6x^2-x-1\right)\)

  \(\left(x-3\right)\left(x+2\right)\left(6x^2-3x+2x-1\right)\)

\(\left(x-3\right)\left(x+2\right)\left(3x\left(2x-1\right)+\left(2x-1\right)\right)\)

\(\left(x-3\right)\left(x+2\right)\left(2x-1\right)\left(3x+1\right)=0\)

câu C nghĩ đã

27 tháng 12 2017

a, \(x^4-6x^3+11x^2-6x+1=0\)

=> \(x^4-6x^3+9x^2+2x^2-6x+1=0\)

=> \(x^2+3x+1=0\)

=> \(\Delta\) =\(b^2-4c\)

=\(3^2.4=5\)

Nên \(\sqrt{\Delta}=5\)

x= \(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-3+\sqrt{5}}{2}\)

hoặc x= \(\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{3+\sqrt{5}}{2}\)

27 tháng 12 2017

Đáp án câu a.

https://giaibaitapvenha.blogspot.com/2017/12/toan-lop-8-ai-so_27.html

14 tháng 5 2019

casio fx 570vn

a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)

hay \(x\in\left\{0;-4;3\right\}\)

d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)

hay \(x\in\left\{-6;1;-1;-4\right\}\)

f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

hay \(x\in\left\{-3;2\right\}\)

30 tháng 1 2019

\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)

\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)

30 tháng 1 2019

\(\text{Giải}\)

\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)

\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)

7 tháng 1 2018

\(6x^4+5x^3-38x^2+5x+6=0\)

\(6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6=0\)

\(6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)=0\)

\(\left(x-2\right)\left(6x^3+17x^2-4x-3\right)=0\)

\(\left(x-2\right)\left[6x^3-3x^2+20x^2-10x+6x-3\right]=0\)

\(\left(x-2\right)\left[6x^2\left(x-\dfrac{1}{2}\right)+20x\left(x-\dfrac{1}{2}\right)+6\left(x-\dfrac{1}{2}\right)\right]=0\)

\(\left(x-2\right)\left(x-\dfrac{1}{2}\right)\left(6x^2+20x+6\right)=0\)

=> \(\left[{}\begin{matrix}x-2=0\\x-\dfrac{1}{2}=0\\6x^2+20x+6=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\\left(3x+1\right)\left(x+3\right)=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\\x=-3\\x=-\dfrac{1}{3}\end{matrix}\right.\)

7 tháng 1 2018

giải cách pt đối xứng cho mình dc k?

2 tháng 7 2017

Ta có : \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x-2\right)-24=0\)

Đặt t = x2 + 5x - 1

Khi đó : (x2 + 5x) = t + 1 ; (x2 + 5x - 2) = t - 1 

Ta có : C = (x2 + 5x - 2)2 (x+ 5x - 2) - 24 = 0

=> (x2 + 5x - 2)= 24 

MK chỉ giả được đến đây thôi 

13 tháng 7 2017

Đang rảnh, buồn ngủ nên giải cho tỉnh táo :D

Ta nhận thấy x=0 không phải là nghiệm của phương trình, vậy ta chia cả 2 vế của phương trình cho x2 khác 0, ta được:

\(6x^2+5x-38+\dfrac{5}{x}+\dfrac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\dfrac{1}{x}\right)+5\left(x+\dfrac{1}{x}\right)-38=0\)

Đặt \(x+\dfrac{1}{x}=y\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)

Ta được: \(6\left(y^2-2\right)+5y-38=0\)

Do đó: y1=2,5;y2=-10/3

Với y=2,5\(\Rightarrow x+\dfrac{1}{x}=2,5\Rightarrow x_1=2;x_2=0,5\)

Với y=-10/3

\(\Rightarrow x+\dfrac{1}{x}=-\dfrac{10}{3}\Rightarrow x_3=-\dfrac{1}{3};x_4=-3\)

Vậy: \(S=\left\{2;0,5;-\dfrac{1}{3};-3\right\}\)

13 tháng 7 2017

Bài a tự giải

Bài b thì biến đổi xong rồi đặt ẩn phụ \(y=x+\dfrac{1}{x}\)

Bài c:

Đặt x-1=y

Phương trình trở thành: \(\left(y+2\right)^4+\left(y-2\right)^4=82\)

Rút gọn ta được: \(2y^4+48y^2-50=0\)

Đặt y2=z ( \(z\ge0\) )

Phương trình này cho z1=1, z2=-25(Loại)

\(z=1\Rightarrow y^2=1\Rightarrow y=\pm1\)

\(\Rightarrow x_1=2;x_2=0\)