\(^{x^2}\)+ 7\(y^2\)=34

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

\(A=5.\left(x-7\right)^2+34\)

Ta có: \(\left(x-7\right)^2\ge0\) \(\forall x.\)

\(\Rightarrow5.\left(x-7\right)^2\ge0\) \(\forall x.\)

\(\Rightarrow5.\left(x-7\right)^2+34\ge34\) \(\forall x.\)

\(\Rightarrow A\ge34.\)

Dấu '' = '' xảy ra khi:

\(\left(x-7\right)^2=0\)

\(\Rightarrow x-7=0\)

\(\Rightarrow x=0+7\)

\(\Rightarrow x=7.\)

Vậy \(MIN_A=34\) khi \(x=7.\)

Chúc bạn học tốt!

Câu C có thể lập bảng xét dấu

15 tháng 8 2018

Ta có: \(\left(2x-5\right)^{2000}\ge0\forall x\)

\(\left(3y+4\right)^{2002}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)

Dấu bằng xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\)

15 tháng 8 2018

a. \(7^6+7^5-7^4\)

\(=7^4.7^2+7^4.7-7^4\)

\(=7^4.\left(7^2+7-1\right)\)

\(=7^4.55\)

\(55⋮11\)

\(\Rightarrow7^4.55⋮11\Rightarrow7^6+7^5-7^4⋮11\left(dpcm\right)\)

b. \(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=3+2^2.\left(1+2\right)+...+2^{58}.\left(1+2\right)\)

\(=3+2^2.3+...+2^{58}.3\)

\(=3.\left(1+2^2+2^4+2^6+...+2^{58}\right)\)

\(3.\left(1+2^2+2^4+2^6+...+2^{58}\right)⋮3\)

\(\Rightarrow1+2+2^2+...+2^{59}⋮3\)

28 tháng 9 2018

dễ vãi

a)Từx:y:z=3:5:(−2)=>\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x-y+3z}{5.3-5+3.\left(-2\right)}=-\dfrac{16}{4}=-4\)

=>x=-12

y=-20

z=8

Vậy...

Các câu sau tương tự

8 tháng 10 2020

a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

Suy ra :

+) \(\frac{x}{7}=2\Leftrightarrow x=14\)

+) \(\frac{y}{13}=2\Leftrightarrow y=26\)

Vậy x = 14 ; y = 26

b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

Suy ra :

+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)

+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)

Vậy x = - 51 ; y = - 9

c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

Suy ra :

+) \(\frac{x}{19}=2\Leftrightarrow x=38\)

+) \(\frac{y}{21}=2\Leftrightarrow y=42\)

Vậy x = 38 ; y = 42

d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

Suy ra :

+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)

+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)

Vậy x =\(\pm\)6 ; y =\(\pm\)8

8 tháng 10 2020

a,AD t/c DTS bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)

b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)

AD t/c DTS bằng nhua ta có:

\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)

c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)

AD t/c DTS bằng nhau ta có:

\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)

d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)

\(\Rightarrow x^2=9k;y^2=16k\)

\(\Rightarrow x^2+y^2=9k+16k=25k=100\)

\(\Rightarrow k=4\)

\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)

\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

25 tháng 5 2020

hangbich ơi chị nhớ em không????

25 tháng 5 2020

luonghong567 ở trong hoidap247.com ý

4 tháng 1 2024

1)\(x>y\)

2)\(x< y\)

3)\(x< y\)

27 tháng 9 2017

Bài 1:

\(a,\dfrac{x}{3}=\dfrac{y}{7}\)\(x+y=20\)

\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\Rightarrow x=2.3=6\)

\(y=2.7=14\)

Vậy \(x=6\)\(y=14\)

\(b,\dfrac{x}{5}=\dfrac{y}{2}\)\(x-y=6\)

\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\Rightarrow x=2.5=10\)

\(y=2.2=4\)

Vậy \(x=10\)\(y=4\)

\(c,\dfrac{x}{7}=\dfrac{18}{14}\)

Từ tỉ lệ thức trên ta có:

\(14x=7.18\)

\(x=\dfrac{7.18}{14}\)

\(x=9\)

Vậy \(x=9\)

\(d,6:x=1\dfrac{3}{4}:5\)

\(6:x=\dfrac{7}{20}\)

\(x=6:\dfrac{7}{20}\)

\(x=\dfrac{120}{7}\)

Vậy \(x=\dfrac{120}{7}\)

\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(x-y+z=8\)

\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow x=2.2=4\)

\(y=2.4=8\)

\(z=2.6=12\)

Vậy \(x=4;y=8;z=12\)

27 tháng 9 2017

a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)

Từ đó suy ra x=1,5; y=3,5

b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)

Từ đó suy ra x=2,5; y=1

c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)

d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)

e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)

Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)