Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3x^2+y^2+10x-2xy+26=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{5}{2}\right)+\dfrac{47}{2}=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\cdot\left(x+\dfrac{5}{2}\right)^2+\dfrac{47}{2}=0\)(vô lý)
b: \(\Leftrightarrow3x^2-12x+12+6y^2-20y+\dfrac{50}{3}+\dfrac{34}{3}=0\)
\(\Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\)(vô lý)
1)
$x^3+9x^2+23x+15=(x^3+x^2)+(8x^2+8x)+(15x+15)$
$=x^2(x+1)+8x(x+1)+15(x+1)$
$=(x+1)(x^2+8x+15)$
$=(x+1)[(x^2+3x)+(5x+15)]$
$=(x+1)[x(x+3)+5(x+3)]=(x+1)(x+3)(x+5)$
5)
$x^4+5x^2+9=(x^4+6x^2+9)-x^2$
$=(x^2+3)^2-x^2=(x^2+3-x)(x^2+3+x)$
3)
$(3x-2)^2(6x-5)(6x-3)-5$
$=(9x^2-12x+4)(36x^2-48x+15)-5$
$=(9x^2-12x+4)[4(9x^2-12x)+15]-5$
$=(a+4)(4a+15)-5$ (đặt $9x^2-12x=a$)
$=4a^2+31a+55$
$=4a^2+20a+11a+55$
$=4a(a+5)+11(a+5)=(4a+11)(a+5)=(36x^2-48x+11)(9x^2-12x+5)$
$=
1 ) a ) Sai đề
b ) \(x^3+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2 ) a ) \(6x^2-10x=10-6x\)
\(\Leftrightarrow6x^2-10x-10+6x=0\)
\(\Leftrightarrow6x^2-4x-10=0\)
\(\Leftrightarrow6x^2+6x-10x-10=0\)
\(\Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(3x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
Vậy ...
b ) \(x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(x+2\right)+x+2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy ...
3 ) \(A=x^2+x+3=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy Min A là : \(\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
3:
Ta có:
\(A=x^2+x+3\)
\(=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Ta lại có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow A\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(Min_A=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
mk nghĩ bạn làm đúng rồi đó
Chắc đúng