Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^0+3^1+3^2...+3^{100}\)
\(=3^0\times\left(1+3^1+3^2\right)+3^3\times\left(1+3^1+3^2\right)+...+3^{98}\times\left(1+3^1+3^2\right)\)
\(=3^0\times13+3^3\times13+...+3^{98}\times13\)
\(=13\times\left(3^0+3^3+...+3^{98}\right)⋮13\)
Số có 3 chữ số chia hết cho 4 là các số 100 , 104 ,... đến 996 là có : \(\frac{996-100}{4}+1=225\text{ số}\)
số có 3 chữ số chia hết cho 28 là các số 112, 140,.. đến 980 là có : \(\frac{980-112}{28}+1=32\text{ số}\)
Vậy có \(225-32=193\text{ số có 3 chữ số chia hết cho 4 mà không chia hết cho 7}\)
`@` `\text {Ans}`
`\downarrow`
`A = 3 + 3^2 + ... + 3^99 + 3^100`
`=> 3A = 3^2 + 3^3 + ... + 3^100 + 3^101`
`=> 3A - A = (3^2 + 3^3 + ... + 3^100 + 3^101) - (3 + 3^2 + ... + 3^99 + 3^100)`
`=> 2A = 3^101 - 3`
`=> 2A + 3 = 3^101 + 3 - 3`
`=> 2A + 3 = 3^101`
Ta có:
`2A + 3 = 3^x`
`=> x = 101.`
A=3+3^2+...+3^100
=>3*A=3^2+3^3+...+3^101
=>2A=3^101-3
=>2A+3=3^101
Theo đề, ta có: 3^x=3^101
=>x=101
Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;
…
Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.
234 chia hết cho 3
370 chia hết cho cả 2 và 5
486 chia hết cho 9
285 chia hết cho 3 và 5
a) 234 chia hết cho 3;
b) 207 chia hết cho 9;
c) 810 chia hết cho cả 2 và 5;
d) 465 chia hết cho cả 3 và 5.
a) 234 chia hết cho 3 (ngoài ra còn 534; 834)
b) 207 chia hết cho 9 (ngoài ra còn 297)
c) 810 chia hết cho cả 2 và 5.
d) 465 chia hết cho cả 3 và 5.