Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 6x - 2y = 7y - 3x
=> 6x + 3x = 7y + 2y
=> 9x = 9y => x = y
=> x - y = 0
mà x - y = 10 (đb)
=> ko có x; t tm
7x - 2y = 5x - 3y
=> 7x - 5x = -3y + 2y
=> 2x = -y
=> \(\frac{x}{-1}=\frac{y}{2}\) => \(\frac{2x}{-2}=\frac{3y}{6}\)
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{-2}=\frac{3y}{6}=\frac{2x+3y}{-2+6}=\frac{20}{4}=5\)
=> \(\hept{\begin{cases}\frac{x}{-1}=5\\\frac{y}{2}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.\left(-1\right)=-5\\y=5.2=10\end{cases}}\)
ta có 6x-2y=7y-3x chuyển vế sang
=>9x=9y
do x-y=10 nên x=10+y
=>9(10+y)=9y
=>90+9y=9y
=>90=0y
=>y=0=>x=10
Tương tự đến hết, kiểm tra lại hộ mk nhé !
\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)
Thay vào phương trình 1 ta có :
\(6\left(10+y\right)-5y=0\)
\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)
Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)
à mk xin lỗi d ko áp dụng đc
\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Làm nốt nhé !
P(x)+Q(x)
=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5
=8xy^2-14y^2-6x^2y-3x-5
=>Chọn A
\(3x+2y=7y-3x\)
\(\Leftrightarrow3x+3x=7y-2y\)
\(\Leftrightarrow6x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{6}\)và \(x-y=10\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{6}=\frac{x-y}{5-6}=\frac{10}{-1}=-10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-1\\\frac{y}{6}=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-1.5=-5\\y=-1.6=-6\end{cases}}}\)
Vậy \(x=-5;y=-6\)
\(3x+2y=7y-3x\)
\(3x+3x=7y-2y\)
\(6x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{6}\)
TTheo t/c dãy tỉ số bằng nhau
\(\Rightarrow\frac{x}{5}=\frac{y}{6}=\frac{x-y}{5-6}=\frac{10}{-1}=-10\)
\(\Rightarrow x=-50;y=-60\)
a) 6x - 2y = 3y - 4x
=> 6x - 2y + (2y + 4x) = 3y - 4x + (2y + 4x) => 10x = 5y => 2x = y => \(\frac{x}{1}=\frac{y}{2}=\frac{x+y}{1+2}=\frac{99}{3}\) = 33 => x = 33 ; y = 66
b) 7x - 2y = 7y - 6x
=> 7x - 2y + (2y + 6x) = 7y - 6x + (2y + 6x) => 13x = 9y => \(\frac{x}{9}=\frac{y}{13}=\frac{2x}{18}=\frac{3y}{39}=\frac{2x+3y}{18+39}=\frac{20}{57}\)
=> \(x=\frac{60}{19};y=\frac{260}{57}\)
a) 6x - 2y = 3y - 4x
6x + 4x = 3y + 2y
10x = 5y
=> x/5 = y/10
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{x}{5}=\frac{y}{10}=\frac{x+y}{5+10}=\frac{99}{15}=\frac{33}{5}\)
(đến đây tự làm)
b) 7x - 2y = 7y - 6x
7x + 6x = 7y + 2y
13x = 9y
=> x/9 = y/13
=> 2x/18 = 3y/39
Áp dụng t/c của dãy tỉ số bằng nhau :
(tự làm tiếp nha)
a, \(3x=5y=7z=>\dfrac{3x}{105}=\dfrac{5y}{105}=\dfrac{7z}{105}=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}\)
áp dụng tính chất dãy tỉ số = nhau
\(=>\dfrac{x}{35}=\dfrac{y}{21}=\dfrac{z}{15}=\dfrac{x+y+z}{35+21+15}=\dfrac{10}{71}\)
\(=>\dfrac{x}{35}=\dfrac{10}{71}=>x=\dfrac{350}{71}\)
\(=>\dfrac{y}{21}=\dfrac{10}{71}=>y=\dfrac{210}{71}\)
\(=>\dfrac{z}{15}=\dfrac{10}{71}=>z=\dfrac{150}{71}\)
b, \(\)\(6x=5y=>\dfrac{x}{5}=\dfrac{y}{6}=>\dfrac{x}{20}=\dfrac{y}{24}\)
có \(7y=8z=>\dfrac{y}{8}=\dfrac{z}{7}=>\dfrac{y}{24}=\dfrac{z}{21}\)
\(=>\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}\)
áp dụng t/c dãy tỉ số = nhau
\(=>\dfrac{3x}{60}=\dfrac{2y}{48}=\dfrac{4z}{84}=\dfrac{3x+2y+4z}{60+48+84}=\dfrac{12}{192}=\dfrac{1}{16}\)
\(=>\dfrac{3x}{60}=\dfrac{1}{16}=>x=1,25\)
\(=>\dfrac{2y}{48}=\dfrac{1}{16}=>y=1,5\)
\(=>\dfrac{4z}{84}=\dfrac{1}{16}=>z=1,3125\)
c, \(x:y:z=1:2:3=>\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\)
\(=>x=\dfrac{y}{2},z=\dfrac{3y}{2}\)
thay x,z vào \(x^3+y^3+z^3=36=>\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(=>y=2\)
\(=>x=\dfrac{y}{2}=\dfrac{2}{2}=1,z=\dfrac{3y}{2}=\dfrac{3.2}{2}=3\)
d, \(\dfrac{x}{2}=\dfrac{y}{3}=>x=\dfrac{2y}{3}\)
thay x vào \(3x^3+y^3=51=>3.\left(\dfrac{2y}{3}\right)^3+y^3=51=>y=3\)
\(=>x=\dfrac{2.3}{3}=2\)
c, từ đoạn này á
\(\left(\dfrac{y}{2}\right)^3+y^3+\left(\dfrac{3y}{2}\right)^3=36\)
\(< =>\dfrac{y^3}{8}+\dfrac{8y^3}{8}+\dfrac{27y^3}{8}=36\)
\(=>\dfrac{36y^3}{8}=36=>36y^3=8.36=>y^3=8=>y=2\)