![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có:
\(\left(x-\frac{1}{2}\right)^6\ge0\)
\(\left(y-\frac{2}{3}\right)^8\ge0\)
\(mà\left(x-\frac{1}{2}\right)^6+\left(y-\frac{2}{3}\right)^8=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{2}\right)^6=0\\\left(y-\frac{2}{3}\right)^8=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{3}\end{cases}}}\)
vậy \(x=\frac{1}{2},y=\frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(2y-1\right)^{1000}-\left(3+y\right)^{1000}=0\)
\(\Rightarrow\left(2y-1\right)^{1000}=\left(3+y\right)^{1000}\)
\(\Rightarrow2y-1=3+y\)
\(2y-y=3+1\)
\(y=4\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
\(\left(x-\frac{2}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(\Rightarrow x-\frac{2}{9}=\left(\frac{2}{3}\right)^2\)
\(x-\frac{2}{9}=\frac{4}{9}\)
\(x=\frac{2}{3}\)
c) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\left(\left(2x-1\right)^3\right)^2=\left(\left(2x-1\right)^4\right)^2\)
\(\Rightarrow\left(2x-1\right)^3=\left(2x-1\right)^4\)
\(8x^3-1=16x^4-1\)
\(16x^4-8x^3=0\)
\(8x^3\left(2x-1\right)=0\)
Nếu \(8x^3=0\) thì \(x^3=0\Rightarrow x=0\)
Nếu \(2x-1=0\)thì \(2x=1\Rightarrow x=\frac{1}{2}\)
Vậy x=0 và x=1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left|2x-3y\right|+\left|2y-4z\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\forall x;y\\\left|2y-4z\right|\ge0\forall y;z\end{matrix}\right.\) \(\Rightarrow\left|2x-3y\right|+\left|2y-4z\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|2y-4z\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x=3y\\2y=4z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=\dfrac{y}{4}\\\dfrac{y}{4}=\dfrac{z}{2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x+y+z}{6+4+2}=\dfrac{7}{12}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{7}{12}.6=\dfrac{7}{2}\\y=\dfrac{7}{12}.4=\dfrac{7}{3}\\z=\dfrac{7}{12}.2=\dfrac{7}{6}\end{matrix}\right.\)
b)\(\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=0\)
\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x-3\right|\ge0\\\left|x-4\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x-3\right|=0\\\left|x-4\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\\x=4\end{matrix}\right.\)
Vì \(2\ne3\ne4\) nên \(x\in\varnothing\)
c)
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+8\right|+\left|x+9\right|\)
Với mọi \(x\ge0\) ta có:
\(\left\{{}\begin{matrix}\left|x+1\right|=x+1\\\left|x+2\right|=x+2\\\left|x+8\right|=x+8\\\left|x+9\right|=x+9\end{matrix}\right.\)\(\Leftrightarrow x+1+x+2+...+x+8+x+9=x-1\)
\(\Leftrightarrow9x+90=x-1\)
\(\Leftrightarrow9x=x-89\)
\(\Leftrightarrow-8x=89\)
\(\Leftrightarrow x=\dfrac{89}{-8}\left(KTM\right)\)
Với mọi \(x< 0\) ta có:
\(\left\{{}\begin{matrix}x+1=-x-1\\x+2=-x-2\\x+8=-x-8\\x+9=-x-9\end{matrix}\right.\) \(\Leftrightarrow\left(-x-1\right)+\left(-x-2\right)+...+\left(-x-8\right)+\left(-x-9\right)=x-1\)
\(\Leftrightarrow-9x-90=x-1\)
\(\Leftrightarrow-9x=x+89\)
\(\Leftrightarrow-10x=89\)
\(\Leftrightarrow x=\dfrac{89}{-10}\left(TM\right)\)
d)\(\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|=0\)
\(\left\{{}\begin{matrix}\left|2x-3y\right|\ge0\\ \left|5y-2z\right|\ge0\\ \left|2z-6\right|\ge0\end{matrix}\right.\) \(\Leftrightarrow\left|2x-3y\right|+\left|5y-2z\right|+\left|2z-6\right|\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left|2x-3y\right|=0\\\left|5y-2z\right|=0\\\left|2z-6\right|=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z=3\\y=\dfrac{6}{5}\\x=\dfrac{9}{5}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ x = -4
2/ 1007 số hạng
3/ f(2) = 3
4/ 50C = -49
5/ mình ko biết
6/ -1
7/mình cũng đang cần ai giải giúp câu này nếu có người giải thì nhẵn mình với
![](https://rs.olm.vn/images/avt/0.png?1311)
người ta ko bt thì hỏi , đừng có mak ns mấy câu vô văn hóa thế nhá
![](https://rs.olm.vn/images/avt/0.png?1311)
c) Ta có(x-1)2 >= 0 với mọi x
(y+3)2>=0 với mọi c
=> (x-1)2+(y+3)2 >= 0 với mọi x,y
Dấu bằng xảy ra khi và chỉ khi
(x-1)2=0 và (y+3)2=0
=> x=1 và y=-3
Ta có : \(\hept{\begin{cases}\left|x-2\right|\ge0\forall x\\\left|y-1\right|\ge0\forall y\end{cases}}\Rightarrow6\left|x-2\right|+8\left|y-1\right|\ge0\forall x;y\)(1)
mà theo đề bài 6|x - 2| + 8|y - 1| = 0 (2)
Từ (1)(2) => Đẳng thức xẩy ra tại 6|x - 2| + 8|y - 1| = 0
=> \(\hept{\begin{cases}x-2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy x = 2 ; y = 1
Vì \(\left|x-2\right|\ge0\forall x;\left|y-1\right|\ge0\forall y\)
\(\Rightarrow6\left|x-2\right|+8\left|y-1\right|\ge0\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}6\left|x-2\right|=0\\8\left|y-1\right|=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-2=0\\y-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy cặp số ( x ; y ) thỏa mãn pt trên là ( 2 ; 1 )