Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x = 4
b) x = 3
c) x = 2
d) x = 1
e) x = 3
f) x = 2
g) x = 4
h) x = 3
2:
1: =>36x+14x=69+81=150
=>50x=150
=>x=3
2: 3^x=81
=>3^x=3^4
=>x=4
3: 3(2x+1)^2=75
=>(2x+1)^2=25
=>2x+1=5 hoặc 2x+1=-5
=>x=-3 hoặc x=2
1:
1: \(\dfrac{13\cdot17^4+4\cdot17^4}{17^3}-\dfrac{14\cdot3^3-14\cdot3^2}{9}\)
\(=\dfrac{17^4\cdot\left(13+4\right)}{17^3}-\dfrac{14\cdot3^2\left(3-1\right)}{9}\)
\(=17\cdot17-14\cdot2\)
=289-28
=261
2:
\(2^3\cdot5^2-\left[131-\left(23-2^3\right)^2\right]\)
\(=8\cdot25-131+\left(-1\right)^2\)
=69+1
=70
\(3^2.3^x.81-27^4=0\)
\(3^2.3^x.3^4-\left(3^3\right)^4=0\)
\(3^6.3^x-3^{12}=0\)
\(3^6.3^x-3^{12}=0\)
\(3^6.3^x=0+3^{12}\)
\(3^6.3^x=3^{12}\)
\(3^{6+x}=3^{12}\)
\(\Rightarrow6+x=12\)
\(x=12-6\)
\(\Rightarrow x=6\)
`Answer:`
a. \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{41}{4}+\frac{3}{4}\\2x=-\frac{41}{4}+\frac{3}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=11\\2x=-\frac{19}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=11:2\\x=-\frac{19}{2}:2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=-\frac{19}{4}\end{cases}}\)
b. \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(x+\frac{1}{5}\right)=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{1}{5}\\x=-\frac{3}{5}-\frac{1}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{4}{5}\end{cases}}\)
c. \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}-\left(-\frac{24}{27}\right)\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Leftrightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Leftrightarrow3x=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{1}{9}:3\)
\(\Leftrightarrow x=\frac{1}{27}\)
=> 692 - 4 (x4 + 17) = 128
=> 4(x4 + 17) = 564
=> x4 + 17 = 141
=> x4 = 124
tới đây là bí rồi