K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2021

1+2+3+1+2+3+4+5+6+4+5+67+8+9+7+8+9+10+11+12+13+14+15+16+17+18+19+20= 349. 
Khi các bạn chuyển đến trường tiểu học đó có : 678 + 12 + 15 = 705 < học sinh 

24 tháng 9 2021

trường tiểu học đó có 705 học sinh

1 cho hình chíp S.ABCD có SA vuông góc với mp (ABC), SA=2a, tam giác ABC vuông cân tại B và AB= \(\sqrt{2}a\) . Góc giữa đường thẳng SC và mp (ABC) bằng 2 một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1m và 1,5 m . Chủ cơ sở dự định là mộ bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kinh đáy của bể nước...
Đọc tiếp

1 cho hình chíp S.ABCD có SA vuông góc với mp (ABC), SA=2a, tam giác ABC vuông cân tại B và AB= \(\sqrt{2}a\) . Góc giữa đường thẳng SC và mp (ABC) bằng

2 một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1m và 1,5 m . Chủ cơ sở dự định là mộ bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kinh đáy của bể nước dự định là gần nhất với kết qả nào dưới đây

A 1,6m B 1,8m C 2,1m D 2,5m

3 Trong ko gian Oxyz, cho hai điểm A(4;0;1) và B(-2;2;3). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

4 Nghiệm của pt \(log_3\left(2x+1\right)=1+log_3\left(x-1\right)\)

5 cho khối lăng trụ đứng \(ABC.A^,B^,C^,\) CÓ Đáy là tam giác đều cạnh a và \(AA^,=\sqrt{2}a\) . Thể tích khối lăng trụ đã cho bằng

6 họ tất cả nguyên hàm của hàm số f(x)=\(\frac{3x-2}{\left(x-2\right)^2}\) trên khoảng (2;\(+\infty\) ) là

7 cho hàm số f(x) bảng xét dấu như sau

hàm số =f(5-2x) đồng biến trên khoảng nào dưới đây

A (1;3) B (4;5) C(\(-\infty\);-3) D (3;4)

8 Cho hình trụ có chiều cao bằng \(3\sqrt{3}\) . Cắt hình trụ đã cho bởi mp song song với trục và cách trục một khoảng bằng 1, thiết diện thu dc có diện tích bằng 18. Diện tích xung quanh của hình trụ đã cho là

9 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB là tam giác đều và năm trong mp vuông góc với mp đáy . Khoảng cách từ B đến mp (SAC) là

10 chọn ngẫu nhiên hai số khác nhau từ 23 số nguyên dương đầu tiên. Xác suất để chọn dc 2 số có tổng là một số chẵn bằng

11 xét số phức z thỏa mãn/z/=\(\sqrt{2}\) trên mp tọa độ Oxy, tập hợp điểm biểu diên các số phức w= \(\frac{5+iz}{1+z}\) là một đường trón có bán kính bằng

5
NV
4 tháng 7 2020

10.

Không gian mẫu: \(C_{23}^2\)

Trong 23 số nguyên dương đầu tiên có 11 số chẵn và 12 số lẻ

Để hai số có tổng chẵn thì hai số đó phải cùng chẵn hoặc cùng lẻ

\(\Rightarrow\) Số cách chọn 2 số thỏa mãn: \(C_{11}^2+C_{12}^2\)

Xác suất: \(P=\frac{C_{11}^2+C_{12}^2}{C_{23}^2}=\frac{11}{23}\)

12.

\(w=\frac{5+iz}{1+z}\Rightarrow w+w.z=5+iz\)

\(\Leftrightarrow w-5=z\left(i-w\right)\Rightarrow z=\frac{w-5}{i-w}\)

Đặt \(w=x+yi\Rightarrow z=\frac{x-5+yi}{-x+\left(1-y\right)i}\Rightarrow\left|\frac{x-5+yi}{-x+\left(1-y\right)i}\right|=\sqrt{2}\)

\(\Leftrightarrow\left(x-5\right)^2+y^2=2x^2+2\left(1-y\right)^2\)

\(\Leftrightarrow x^2+y^2+10x-4y-23=0\)

Tập hợp biểu diễn w là đường tròn có bán kính \(R=\sqrt{\left(-5\right)^2+2^2+23}=2\sqrt{13}\)

NV
4 tháng 7 2020

9.

Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)

\(SH=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)

Đường thẳng BH cắt (SAC) tại A, mà \(BA=2HA\)

\(\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HP\perp AC\Rightarrow HP=\frac{1}{2}OB=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\) (đường trung bình)

Từ H kẻ \(HQ\perp SP\Rightarrow HQ\perp\left(SAC\right)\Rightarrow HQ=d\left(H;\left(SAC\right)\right)\)

\(\frac{1}{HQ^2}=\frac{1}{SH^2}+\frac{1}{HP^2}=\frac{28}{3a^2}\Rightarrow HQ=\frac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(B;\left(SAC\right)\right)=2HQ=\frac{a\sqrt{21}}{7}\)

Câu 7: Tìm số phức liên hợp của số phức z=1−2iz=1−2iA. 2−i2−iB. −1−2i−1−2iC. −1+2i−1+2iD. 1+2i1+2iCâu 8: Trong không gian Oxyz, cho hai điểm A(−1;2;3)A(−1;2;3) và B(3;0;−2)B(3;0;−2). Tìm tọa độ của vectơ −−→AB.AB→.A. −−→AB=(−4;2;5)AB→=(−4;2;5)B. −−→AB=(1;1;12)AB→=(1;1;12)C. −−→AB=(2;2;1)AB→=(2;2;1)D. −−→AB=(4;−2;−5)AB→=(4;−2;−5)Câu 9: Trong không gian Oxyz, mặt phẳng (P)(P) đi qua...
Đọc tiếp

Câu 7: Tìm số phức liên hợp của số phức z=1−2i

A. 2−i

B. −1−2i

C. −1+2i

D. 1+2i

Câu 8: Trong không gian Oxyz, cho hai điểm A(−1;2;3) và B(3;0;−2). Tìm tọa độ của vectơ AB→.

A. AB→=(−4;2;5)

B. AB→=(1;1;12)

C. AB→=(2;2;1)

D. AB→=(4;−2;−5)

Câu 9: Trong không gian Oxyz, mặt phẳng (P) đi qua điểm A(1;2;0) và vuông góc với đường thẳng d:x+12=y1=z−1−1 có phương trình là

A. x+2y−z+4=0

B. 2x−y−z+4=0

C. 2x+y−z−4=0

D. 2x+y+z−4=0

Câu 10: Họ nguyên hàm của hàm số f(x)=4x3 là

A. 4x4+C

B. 12x2+C

C. x44+C

D. x4+C

Câu 11: Công thức nguyên hàm nào sau đây đúng?

A. ∫exdx=−ex+C

B. ∫dx=x+C

C. ∫1xdx=−ln⁡x+C

D. ∫cos⁡xdx=−sin⁡x+C

Câu 12: Trong không gian Oxyz, cho a→=(−1;3;2) và b→=(−3;−1;2). Tính a→.b→.

A. 2

B. 10

C. 3

D. 4

Câu 13: Trong không gian Oxyz, điểm M(3;4;−2) thuộc mặt phẳng nào trong các mặt phẳng sau?

A. (S):x+y+z+5=0

B. (Q):x−1=0

C. (R):x+y−7=0

D. (P):z−2=0

Câu 14: Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm I(1;0;−3)và bán kính R=3?

A. (x−1)2+y2+(z+3)2=9

B. (x−1)2+y2+(z+3)2=3

C. (x+1)2+y2+(z−3)2=3

D. (x+1)2+y2+(z−3)2=9

Câu 15: Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm M(−1;2;0) và có vectơ pháp tuyến n→=(4;0;−5) là

A. 4x−5y−4=0

B. 4x−5z−4=0

C. 4x−5y+4=0

D. 4x−5z+4=0

Câu 16: Nghiệm của phương trình (3+i)z+(4−5i)=6−3i là

A. z=25+45i

B. z=12+12i

C. z=45+25i

D. z=1+12i

Câu 17: Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu (x−1)2+(y+2)2+z2=12 và song song với mặt phẳng (Oxz)có phương trình là

A. y+2=0

B. x+z−1=0

C. y−2=0

D. y+1=0

Câu 18: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x2−2x và trục hoành.

A. 2

B. 43

C. 203

D. −43

Câu 19: Cho F(x) là một nguyên hàm củaf(x) trên R và F(0)=2, F(3)=7. Tính ∫03f(x)dx.

A. 9

B. -9

C. 5

D. -5

Câu 20: Gọi z1,z2 là hai nghiệm phức của phương trình z2−6z+14=0. Tính S=|z1|+|z2|.

A. S=32

B. S=26

C. S=43

D. S=214

Câu 21: Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng (P):2x+2y−z−11=0 và (Q):2x+2y−z+4=0.

A. d((P),(Q))=5

B. d((P),(Q))=3

C. d((P),(Q))=1

D. d((P),(Q))=4

Câu 22: Cho z=1+3i. Tìm số phức nghịch đảo của số phức z.

A. 1z=14+34i

B. 1z=12−32i

C. 1z=12+32i

D. 1z=14−34i

Câu 23: Tính tích phân I=∫02019e2xdx.

A. I=12e4038

B. I=12e4038−1

C. I=12(e4038−1)

D. 

0
11 tháng 12 2020

undefined

NV
18 tháng 3 2021

ĐKXĐ: \(x\in\left[0;2018\right]\)

\(y'=\dfrac{1009-x}{\sqrt{2018x-x^2}}=0\Rightarrow x=1009\)

Hàm đồng biến trên \(\left(0;1009\right)\)

10 tháng 9 2019

Chọn D

NV
6 tháng 4 2019

Gọi tọa độ các giao điểm là \(A\left(a;0;0\right)\); \(B\left(0;b;0\right)\); \(C\left(0;0;c\right)\)

Không làm mất tính tổng quát, chỉ cần xét trường hợp \(a;b;c>0\)

Phương trình mặt phẳng (P) theo đoạn chắn: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

Ta có: \(S=OA+OB+OC=a+b+c\)

Do \(\left(P\right)\) qua M nên: \(\frac{4}{a}+\frac{1}{b}+\frac{9}{c}=1\)

Áp dụng BĐT Cauchy-Scwarz: \(\frac{2^2}{a}+\frac{1^2}{b}+\frac{3^2}{c}\ge\frac{\left(2+1+3\right)^2}{a+b+c}=\frac{36}{a+b+c}\)

\(\Rightarrow\frac{36}{a+b+c}\le1\Rightarrow a+b+c\ge36\)

\(\Rightarrow S_{min}=36\) khi \(\left\{{}\begin{matrix}a+b+c=36\\\frac{2}{a}=\frac{1}{b}=\frac{3}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12\\b=6\\c=18\end{matrix}\right.\)

Phương trình (P) khi đó có dạng: \(\frac{x}{12}+\frac{y}{6}+\frac{z}{18}=1\)

Hay chuyển dạng chính tắc: \(3x+6y+2z-36=0\)

Không thấy điểm I ở đâu để tính tiếp cả, nhưng đến đây thì mọi chuyện đơn giản, chỉ cần áp dụng công thức khoảng cách vào là xong.

20 tháng 6 2018

Chọn C

Khối hai mươi mặt đều có các mặt là tam giác nên thuộc loại  3 ; 5 .