Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+2+3+1+2+3+4+5+6+4+5+67+8+9+7+8+9+10+11+12+13+14+15+16+17+18+19+20= 349.
Khi các bạn chuyển đến trường tiểu học đó có : 678 + 12 + 15 = 705 < học sinh
10.
Không gian mẫu: \(C_{23}^2\)
Trong 23 số nguyên dương đầu tiên có 11 số chẵn và 12 số lẻ
Để hai số có tổng chẵn thì hai số đó phải cùng chẵn hoặc cùng lẻ
\(\Rightarrow\) Số cách chọn 2 số thỏa mãn: \(C_{11}^2+C_{12}^2\)
Xác suất: \(P=\frac{C_{11}^2+C_{12}^2}{C_{23}^2}=\frac{11}{23}\)
12.
\(w=\frac{5+iz}{1+z}\Rightarrow w+w.z=5+iz\)
\(\Leftrightarrow w-5=z\left(i-w\right)\Rightarrow z=\frac{w-5}{i-w}\)
Đặt \(w=x+yi\Rightarrow z=\frac{x-5+yi}{-x+\left(1-y\right)i}\Rightarrow\left|\frac{x-5+yi}{-x+\left(1-y\right)i}\right|=\sqrt{2}\)
\(\Leftrightarrow\left(x-5\right)^2+y^2=2x^2+2\left(1-y\right)^2\)
\(\Leftrightarrow x^2+y^2+10x-4y-23=0\)
Tập hợp biểu diễn w là đường tròn có bán kính \(R=\sqrt{\left(-5\right)^2+2^2+23}=2\sqrt{13}\)
9.
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(SH=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
Đường thẳng BH cắt (SAC) tại A, mà \(BA=2HA\)
\(\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)
Từ H kẻ \(HP\perp AC\Rightarrow HP=\frac{1}{2}OB=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\) (đường trung bình)
Từ H kẻ \(HQ\perp SP\Rightarrow HQ\perp\left(SAC\right)\Rightarrow HQ=d\left(H;\left(SAC\right)\right)\)
\(\frac{1}{HQ^2}=\frac{1}{SH^2}+\frac{1}{HP^2}=\frac{28}{3a^2}\Rightarrow HQ=\frac{a\sqrt{21}}{14}\)
\(\Rightarrow d\left(B;\left(SAC\right)\right)=2HQ=\frac{a\sqrt{21}}{7}\)
bạn đã ăn 1 vé báo cáo