Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\sqrt{1+2\sqrt{2}+\sqrt{11+6\sqrt{2}}}=\sqrt{1+2\sqrt{2}+\sqrt{9+2.3\sqrt{2}+2}}=\sqrt{1+2\sqrt{2}+3+\sqrt{2}}=\sqrt{4+3\sqrt{2}}\)
\(b.\sqrt{10-2\sqrt{21}}+\sqrt{4+2\sqrt{3}}=\sqrt{7-2\sqrt{7}.\sqrt{3}+3}+\sqrt{3+2\sqrt{3}+1}=\sqrt{7}-\sqrt{3}+\sqrt{3}+1=\sqrt{7}+1\)
\(c.\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{1-\dfrac{\sqrt{3}}{2}}=\sqrt{\dfrac{3}{4}+2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}+\sqrt{\dfrac{3}{4}-2.\dfrac{\sqrt{3}}{2}.\dfrac{1}{2}+\dfrac{1}{4}}=\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}=\sqrt{3}\)
\(d.\sqrt{15+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}=\sqrt{9+2.3\sqrt{6}+6}-\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3+\sqrt{6}-3\sqrt{2}+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+\sqrt{2}-\sqrt{6}+1\right)\)
\(1.\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}=\sqrt{16-15}=1\)
\(2.\sqrt{6+2\sqrt{5}}.\sqrt{6-2\sqrt{5}}=\sqrt{36-20}=\sqrt{16}=4\)
\(3.\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\) \(4.\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}-\sqrt{3-2\sqrt{3}+1}=\sqrt{3}+1-\sqrt{3}+1=2\)
Ta có M=\(\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{2y}{4}+\dfrac{8}{y}+\dfrac{3x}{2}+\dfrac{6y}{4}\) Áp dụng BĐT cô si cho 2 số
\(\dfrac{3x}{2}+\dfrac{6}{x}\ge6\) và \(\dfrac{2y}{4}+\dfrac{8}{y}\ge4\) cộng hai vế BĐT với nhau ta có :
\(\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{2y}{4}+\dfrac{8}{y}\ge10\) =>\(M\ge10+\dfrac{3x}{2}+\dfrac{6y}{4}=10+\dfrac{6\left(x+y\right)}{4}=19\)
vậy minM=19 tại x=2 và y=4
Bài 2:
a: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\cdot\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
=>x+5=4
hay x=-1
b: \(\sqrt{25x-25}-\dfrac{15}{2}\cdot\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}\cdot1.5=6\)
=>x-1=16
hay x=17
\(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+2\sqrt{2}+4}{\sqrt{2}+\sqrt{3}+2}\)
\(=\dfrac{3\sqrt{2}+\sqrt{3}+\sqrt{6}+4}{\sqrt{2}+\sqrt{3}+2}\)
\(=\dfrac{\left(3\sqrt{2}+\sqrt{3}+\sqrt{6}+4\right)\left(\sqrt{2}+\sqrt{3}-2\right)}{1+2\sqrt{6}}\)
\(=\dfrac{6+3\sqrt{6}+6\sqrt{2}+\sqrt{6}+3-2\sqrt{3}+\sqrt{12}+\sqrt{18}-2\sqrt{6}+4\sqrt{2}+4\sqrt{3}-8}{1+2\sqrt{6}}\)
\(=\dfrac{6+3\sqrt{6}-6\sqrt{2}+\sqrt{6}+3-2\sqrt{3}+2\sqrt{3}+\sqrt{18}+2\sqrt{6}+4\sqrt{2}+4\sqrt{3}-8}{1+2\sqrt{6}}\)
\(=\dfrac{6+3\sqrt{6}-6\sqrt{2}+\sqrt{6}+3+3\sqrt{2}-2\sqrt{6}+4\sqrt{2}+4\sqrt{3}-8}{1+2\sqrt{6}}\)
\(=\dfrac{1+2\sqrt{6}+\sqrt{2}+4\sqrt{3}}{1+2\sqrt{6}}\)
\(=1+\sqrt{2}\)
\(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(C=1+\sqrt{2}\)
KÉO XUỐNG SẼ CÓ ĐÁP ÁN
Tò mò thì kéo đi
Phê3
tiếp đi
..............................
HẾT
\(\frac{\sqrt{12-2\sqrt{11}}}{2\left(\sqrt{11}-1\right)}+3\sqrt{2}-3\left(\sqrt{2}-1\right)\)
\(=\frac{\sqrt{\left(\sqrt{11}-1\right)^2}}{2\left(\sqrt{11}-1\right)}+3\sqrt{2}-3\sqrt{2}+3\)
\(=\frac{1}{2}+3=\frac{7}{2}\)
\(\sqrt{\left(6+\sqrt{6}+\sqrt{6}\right)}=\sqrt{\left(6+2,\left(4\right)+2,\left(4\right)\right)}=\sqrt{10,8}\)
Có: \(\sqrt{9}=3\)
Thấy 10,8 > 9 => \(\sqrt{10,8}>\sqrt{9}\)
Vậy: \(\sqrt{\left(6+\sqrt{6}+\sqrt{6}\right)}>3\)