Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+1\right)^2-4\left(x-2\right)^2=9x^2+6x+1-4\left(x^2-4x+4\right)=9x^2+6x+1-4x^2+16x-16=5x^2+22x-15=\)
\(\left(5x-3\right)\left(x+5\right)\)
\(9\left(2x+3\right)^2-4\left(x+1\right)^2=9\left(4x^2+12x+9\right)-4\left(x^2+2x+1\right)=36x^2+108x+81-4x^2-8x-4=32x^2+100x+77\)
\(\left(8x+11\right)\left(4x+7\right)\)
1) Ta có: \(2\left(x-y\right)+\left(x-y\right)^2+\left(y-x\right)^2\)
\(=2\left(-3-1000\right)+\left(-3-1000\right)^2+\left(3+1000\right)^2\)
\(=-2006+1006009+1006009\)
\(=2010012\)
2) \(x^3+12x^2+48x+64\)
\(=x^3+3.x^2.4+3.x.4^2+4^3\)
\(=\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)
3) \(x^3-6x^2+12x-8\)
\(=x^3-3.x^2.2+3.x.2^2-2^3\)
\(=\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)
\(2\left(x-y\right)+\left(x-y\right)^2+\left(y-x\right)^2\)
=\(2\left(x-y\right)+\left(x-y+y-x\right)\left(x-y-\left(y-x\right)\right)\)
= \(2\left(x-y\right)+\left(x-y+y-x\right)\left(x-y-y+x\right)\)
= \(2\left(x-y\right)\)
Thay x = -3,y = 1000 vào ta có : 2(x - y) = 2(-3 - 1000) = 2.(-1003) = -2006
\(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)
Thay x = 6 vào ta có : (6 + 4)3 = 103 = 10000
\(x^3-6x^2+12x-8=x^3-3x^2\cdot2+3x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Thay x = 22 vào ta có : (22 - 2)3 = 203 = 8000
a, \(49x^2-70x+25=\left(7x\right)^2-2.7x.5+5^2=\left(7x-5\right)^2\)
Thay x = 5 vào biểu thức trên : \(\left(35-5\right)^2=30^2=900\)
b, \(x^3+12x^2+48x+64=\left(x+4\right)^3\)
Thay x = 6 vào biểu thức trên ta được : \(\left(6+4\right)^3=1000000\)
3, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
Thay x = -6 ; y = 2 vào biểu thức trên ta được : \(\left(-12+2\right)^2=100\)
Bafi1:
\(\left(3x+4\right)\left(9x^2-12x+16\right)=65\)
<=>\(27x^3+64=65\)
=>\(27x^3=1\)
=>\(x^3=\dfrac{1}{27}\)
=>\(x=\dfrac{1}{3}\)
Vậy...
Bafi2:
\(M=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(=-2-6x^2-12xy-6y^2+6\left(x^2+2xy+y^2\right)\)
\(=-2\)
Vậy...(đpcm)
mjk sửa lại
a)100x^2 -( x^2+25)^2
=[10x-(x2+25)][10x+(x2+25)]
=(10x-x2-25)(10x+x2+25)
=-(x2-10x+25)(x+5)2
=-(x-5)2(x+5)2
b)(x+4)^3 - 64
=(x+4)3-43
=(x+4-4)[(x+4)2+(x+4).4+16]
=x(x2+8x+16+4x+16+16)
=x(x2+12x+48)
c) x^6 + y^6
=(x2)3+(y2)3
=(x2+y2)(x4+x2y2+y4)
\(a)4{{\rm{x}}^2} - 12{\rm{x}}y + 9{y^2} = {\left( {2{\rm{x}}} \right)^2} - 2.2{\rm{x}}.3y + {\left( {3y} \right)^2} = {\left( {2{\rm{x}} - 3y} \right)^2}\)
\(b){x^3} + 9{{\rm{x}}^2} + 27{\rm{x}} + 27 = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {\left( {x + 3} \right)^3}\)
\(c)8{y^3} - 12{y^2} + 6y - 1 = {\left( {2y} \right)^3} - 3.{\left( {2y} \right)^2}.1 + 3.2y{.1^2} - {1^3} = {\left( {2y - 1} \right)^3}\)
\(\begin{array}{l}d) {\left( {2{\rm{x}} + y} \right)^2} - 4{y^2}\\ = {\left( {2{\rm{x}} + y} \right)^2} - {\left( {2y} \right)^2}\\ = \left( {2{\rm{x}} + y + 2y} \right)\left( {2{\rm{x}} + y - 2y} \right) = \left( {2{\rm{x}} + 3y} \right)\left( {2{\rm{x}} - y} \right)\end{array}\)
\(e) 27{y^3} + 8 = {\left( {3y} \right)^3} + {2^3} = \left( {3y + 2} \right)\left( {9{y^2} - 6y + 4} \right)\)
\(g) 64 - 125{{\rm{x}}^3} = {4^3} - {\left( {5{\rm{x}}} \right)^3} = \left( {4 - 5{\rm{x}}} \right)\left( {16 + 20{\rm{x}} + 25{{\rm{x}}^2}} \right)\)
1. x3 + 8 = (x + 2 )(x2 - x + 1)
2. 27 - 8y3 = ( 3 - 2y ) ( 9 + 6y + 4y2 )
3. y6 + 1 = (y2)3 + 1 = ( y2 + 1) ( y4 - y2 +1 )
4.64x3 - \(\dfrac{1}{8}\)y3 = ( 4x - \(\dfrac{1}{2}\)y ) ( 16x2 + 2xy + \(\dfrac{1}{4}\)y2)
5. 125x6 - 27y9 = (5x2)3 - (3y3)3
= ( 5x2 - 3y3)(25x4 +15x2y3 + 9y6)