Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x-2^4\right).7^3=2.7^4\)\(\Leftrightarrow3x-2^4=2.7^4:7^3\)
\(\Leftrightarrow3x-16=2.7\)\(\Leftrightarrow3x-16=14\)\(\Leftrightarrow3x=30\)
\(\Leftrightarrow x=10\)
Vậy \(x=10\)
b) \(3x+4x=\left|-75\right|+23\)\(\Leftrightarrow7x=75+23\)
\(\Leftrightarrow7x=98\)\(\Leftrightarrow x=14\)
Vậy \(x=14\)
a) \(\left(3x-2^4\right)\cdot7^3=2\cdot7^4\)
=> \(3x\cdot7^3-2^4\cdot7^3=2\cdot7\cdot7^3\)
=> \(3x\cdot7^3=14\cdot7^3+16\cdot7^3\)
=> \(3x\cdot7^3=\left(14+16\right)\cdot7^3\)
=> \(3x\cdot7^3=30\cdot7^3\)
=> \(3x=30\)(bỏ hai vế 73)
=> \(x=10\)
Vậy x = 10
b) \(3x+4x=\left|-75\right|+23\)
=> \(7x=75+23\)
=> \(7x=98\)
=> \(x=14\)
Vậy x = 14
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+\frac{1}{18\cdot19\cdot20}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+\frac{2}{18\cdot19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\)
\(B=\frac{1}{2}\cdot\frac{189}{380}=\frac{189}{760}\)
\(C=\frac{52}{1\cdot6}+\frac{52}{6\cdot11}+\frac{52}{11\cdot16}+...+\frac{52}{31\cdot36}\)
\(C=\frac{52}{5}\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+...+\frac{6}{31\cdot36}\right)\)
\(C=\frac{52}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{31}-\frac{1}{36}\right)\)
\(C=\frac{52}{5}\cdot\left(1-\frac{1}{36}\right)\)
\(C=\frac{91}{9}\)
Lời giải:
PT $\Leftrightarrow (\frac{x+1}{2022}+1)+(\frac{x+2}{2021}+1)+...+(\frac{x+23}{2000}+1)=0$
$\Leftrightarrow \frac{x+2023}{2022}+\frac{x+2023}{2021}+...+\frac{x+2023}{2000}=0$
$\Leftrightarrow (x+2023)(\frac{1}{2022}+\frac{1}{2021}+...+\frac{1}{2000})=0$
Dễ thấy tổng trong () luôn dương
$\Rightarrow x+2023=0$
$\Leftrightarrow x=-2023$
\(2.\left(70-x\right)+2^3.3^2=92\)
\(140-2x+72=92\)
\(-2x=92-212\)
\(-2x=-120\)
\(x=60\)
Lời giải:
$E=1-2+22-23+24-25+.....+21000$
$=(1-2)+(22-23)+(24-25)+......+(20998-20999)+21000$
$=(-1)+(-1)+(-1)+....+(-1)+21000$
Số lần xuất hiện của -1: $[(20999-22):1+1]:2+1=10490$
$E=(-1).10490+21000=10510$
\(\left(6.5^2-13.7\right).2-23.\left(7+3\right)\\ =\left(6.25-91\right).2-23.10\\ =\left(150-91\right).2-230\\ =59.2-230=118-230=-112\)