Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(-y^8+10y^4x^3-25x^6\)
\(=-\left(y^8-10y^4x^3+25x^6\right)\)
\(=-\left[\left(y^4\right)^2-2.y^4.5x^3+\left(5x^3\right)^2\right]\)
\(=-\left(y^4-5x^3\right)^2\)
c) \(8x^3+36x^2y+54xy^2+27y^3\)
\(=\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\)
\(=\left(2x+3y\right)^3\)
d) \(-y^3+12y^2x-48yx^2+64x^3\)
\(=-\left(y^3-12y^2x+48yx^2-64x^3\right)\)
\(=-\left[y^3-3.y^2.4x+3.y.\left(4x\right)^2-\left(4x\right)^3\right]\)
\(=-\left(y-4x\right)^3\)
e) \(64x^6y^4-81x^2y^2\)
\(=\left(8x^3y^2\right)^2-\left(9xy\right)^2\)
\(=\left(8x^3y^2-9xy\right)\left(8x^3y^2+9xy\right)\)
f) \(64x^6-27y^6\)
\(=\left(4x^2\right)^3-\left(3y^2\right)^3\)
\(=\left(4x^2-3y^2\right)\left[\left(4x^2\right)^2+4x^2.3y^2+\left(3y^2\right)^2\right]\)
\(=\left(4x^2-3y^2\right)\left(16x^4+12x^2y^2+9x^4\right)\)
bài này cũng giống như bài vừa nãy, bn thêm bớt 16x2y2
\(64x^4+y^4\)
\(=64x^2+16x^2y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
Ta có ; \(64x^4+y^4=\left(8x^2\right)^2+16\left(xy\right)^2+\left(y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
64x^4+y^4
=(8x^2)^2+(y^2)^2
=[(8x^2)^2+16x^2y^2+(y^2)^2]-16x^2y^2
=(8x^2+y^2)-(4xy)^2
=(8x^2+y^2-4xy)(8x^2+y^2+4xy)
64x4 + y4 = (8x2)2 +16x2y2+ (y2) - 16x2y2 = (8x2+y2)2 - (4xy)2 = (8x2+y2- 4xy) (8x2+y2 + 4xy)
mk chỉ hơi chửi tục tí thôi nhưng địt con mẹ mình hiền lắm
\(64x^4+y^4=64x^4+16x^2y^2-16x^2y^2+y^4\)
\(=\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
\(4x^4+81=\left(2x\right)^2+2.2x^2.9+9^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
\(64x^4+y^4=\left(8x^2\right)^2+2.8x^2.y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)
\(64x^4+y^4=64x^4+16x^2y^2+y^4-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
=.= hok tốt!!
Phân tích đa thức thành nhân tử:d
\(64x^4+y^4\)
\(=\left(64x^4+16x^2y^2+y^4\right)-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)