K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2024

\(\dfrac{64}{\left(-2\right)^x}=\left(-16\right)^2:4^3\)

=>\(\dfrac{64}{\left(-2\right)^x}=4^4:4^3=4\)

=>\(\left(-2\right)^x=\dfrac{64}{4}=16=\left(-2\right)^4\)

=>x=4

15 tháng 12 2024

\(\dfrac{64}{\left(-2\right)^x}\) = (-16)2 : 43

\(\dfrac{\left(-2\right)^6}{\left(-2\right)^x}\) = (4)4 : 43 

(-2)6-\(x\) = 4

(-2)6 - \(x\) = (-2)2

     6 - \(x\) = 2

          \(x\) = 6 - 2

         \(x\) = 4 

Vậy \(x=4\)

1. S = { 3;4 }

2. S={ -2; 1}

3. S={\(\frac{1}{2}\) ; 2;-2}

4.S={\(\frac{4}{3}\) ;2}

S la tap ngo nhek , xin k nao

25 tháng 1 2019

\(1)-4x\left(x-5\right)-2x\left(8-2x\right)=-3\)

\(\Rightarrow-4x^2-\left(-20x\right)-16x+4x^2=-3\)

\(\Rightarrow20x-14x=-3\)

\(\Rightarrow6x=-3\)

\(\Rightarrow x=-\dfrac{1}{2}\)

Vậy \(x=-\dfrac{1}{2}\)

\(2)\) Theo bài ra, ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)\(x^2+y^2+z^2=14\)

\(\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^3=\left(\dfrac{y}{4}\right)^3=\left(\dfrac{z}{6}\right)^3\)

\(\Rightarrow\sqrt[3]{\left(\dfrac{x}{2}\right)^3}=\sqrt[3]{\left(\dfrac{y}{4}\right)^3}=\sqrt[3]{\left(\dfrac{z}{6}\right)^3}\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)

\(\Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{4}\right)^2=\left(\dfrac{z}{6}\right)^2\)

\(\Rightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

Suy ra:

\(+)\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}.4=1=\left(\pm1\right)^2\Rightarrow x=\pm1\)

\(+)\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{16}.4=\dfrac{1}{4}=\left(\pm\dfrac{1}{2}\right)^2\Rightarrow y=\pm\dfrac{1}{2}\)

\(+)\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{36}.4=\dfrac{1}{9}=\left(\pm\dfrac{1}{3}\right)^2\Rightarrow z=\pm\dfrac{1}{3}\)

Vậy \(\left(x;y;z\right)\in\left\{\left(-1;-\dfrac{1}{2};-\dfrac{1}{3}\right);\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\right\}\)

25 tháng 1 2019

Oz Vessalius Câu 3 bạn xem lại xem có sai đề không?

16 tháng 8 2019

1O8bNJH.jpg

b) Tính

\(A=\frac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}\)

\(=\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.2^9.3^9}{\left(2^2\right)^6.3^{12}+2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)

\(=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)

\(=\frac{2.6}{3.7}=\frac{12}{21}=\frac{4}{7}\)

Vậy : \(A=\frac{4}{7}\)

8 tháng 5 2017

Giải:

a)

- Thu gọn: \( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=18 - x^4 + 4x - 2x^4 + x^2 -16\)

\( f(x)=(18-16)+(-x^4-2x^4)+4x+x^2\)

\(f\left(x\right)=2-3x^4+4x+x^2\)

Sắp xếp: \(4x+x^2-3x^4+2\)

- Thu gọn: \(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+x^4+4x^2+7x-6x^4-3x\)

\(g(x)=2+(x^4-6x^4)+4x^2+(7x-3x)\)

\(g\left(x\right)=2-5x^4+4x^2+4x\)

Sắp xếp: \(4x+4x^2-5x^4+2\)

b)

\(f(x)+g(x)=(4x+x^2-3x^4+2)+(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2+4x+4x^2-5x^4+2\)

\(=\left(4x+4x\right)+\left(x^2+4x^2\right)-\left(3x^4-5x^4\right)+\left(2+2\right)\)

\(=8x+5x^2-\left(-2x^4\right)+4\)

\(f(x)-g(x)=(4x+x^2-3x^4+2)-(4x+4x^2-5x^4+2)\)

\(=4x+x^2-3x^4+2-4x-4x^2+5x^4-2\)

\(=\left(4x+4x\right)+\left(x^2-4x^2\right)-\left(3x^4+5x^4\right)+\left(2-2\right)\)

\(=8x+\left(-3x^2\right)-8x^4\)

\(\Leftrightarrow\left(\dfrac{4}{3}\right)^{150}:x=\left(-\dfrac{4}{3}\right)^{135}\)

\(\Leftrightarrow x=\left(\dfrac{4}{3}\right)^{150}:\left(-\dfrac{4}{3}\right)^{135}=-\left(\dfrac{4}{3}\right)^{15}\)